Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher K. Cote is active.

Publication


Featured researches published by Christopher K. Cote.


Infection and Immunity | 2006

Roles of macrophages and neutrophils in the early host response to Bacillus anthracis spores in a mouse model of infection

Christopher K. Cote; Nico van Rooijen; Susan L. Welkos

ABSTRACT The development of new approaches to combat anthrax requires that the pathogenesis and host response to Bacillus anthracis spores be better understood. We investigated the roles that macrophages and neutrophils play in the progression of infection by B. anthracis in a mouse model. Mice were treated with a macrophage depletion agent (liposome-encapsulated clodronate) or with a neutrophil depletion agent (cyclophosphamide or the rat anti-mouse granulocyte monoclonal antibody RB6-8C5), and the animals were then infected intraperitoneally or by aerosol challenge with fully virulent, ungerminated B. anthracis strain Ames spores. The macrophage-depleted mice were significantly more susceptible to the ensuing infection than the saline-pretreated mice, whereas the differences observed between the neutropenic mice and the saline-pretreated controls were generally not significant. We also found that augmenting peritoneal neutrophil populations before spore challenge did not increase resistance of the mice to infection. In addition, the bacterial load in macrophage-depleted mice was significantly greater and appeared significantly sooner than that observed with the saline-pretreated mice. However, the bacterial load in the neutropenic mice was comparable to that of the saline-pretreated mice. These data suggest that, in our model, neutrophils play a relatively minor role in the early host response to spores, whereas macrophages play a more dominant role in early host defenses against infection by B. anthracis spores.


Journal of Immunology | 2010

Cutting Edge: Resistance to Bacillus anthracis Infection Mediated by a Lethal Toxin Sensitive Allele of Nalp1b/Nlrp1b

Jill K. Terra; Christopher K. Cote; Amy Jenkins; Joel A. Bozue; Susan L. Welkos; Steven M. LeVine; Kenneth A. Bradley

Pathogenesis of Bacillus anthracis is associated with the production of lethal toxin (LT), which activates the murine Nalp1b/Nlrp1b inflammasome and induces caspase-1–dependent pyroptotic death in macrophages and dendritic cells. In this study, we investigated the effect of allelic variation of Nlrp1b on the outcome of LT challenge and infection by B. anthracis spores. Nlrp1b allelic variation did not alter the kinetics or pathology of end-stage disease induced by purified LT, suggesting that, in contrast to previous reports, macrophage lysis does not contribute directly to LT-mediated pathology. However, animals expressing a LT-sensitive allele of Nlrp1b showed an early inflammatory response to LT and increased resistance to infection by B. anthracis. Data presented here support a model whereby LT-mediated activation of Nlrp1b and subsequent lysis of macrophages is not a mechanism used by B. anthracis to promote virulence, but rather a protective host-mediated innate immune response.


Journal of Bacteriology | 2007

Morphogenesis of the Bacillus anthracis Spore

Rebecca Giorno; Joel A. Bozue; Christopher K. Cote; Theresa Wenzel; Krishna-sulayman L. Moody; Michael Mallozzi; Matthew Ryan; Rong Wang; Ryszard Zielke; Janine R. Maddock; Arthur M. Friedlander; Susan L. Welkos; Adam Driks

Bacillus spp. and Clostridium spp. form a specialized cell type, called a spore, during a multistep differentiation process that is initiated in response to starvation. Spores are protected by a morphologically complex protein coat. The Bacillus anthracis coat is of particular interest because the spore is the infective particle of anthrax. We determined the roles of several B. anthracis orthologues of Bacillus subtilis coat protein genes in spore assembly and virulence. One of these, cotE, has a striking function in B. anthracis: it guides the assembly of the exosporium, an outer structure encasing B. anthracis but not B. subtilis spores. However, CotE has only a modest role in coat protein assembly, in contrast to the B. subtilis orthologue. cotE mutant spores are fully virulent in animal models, indicating that the exosporium is dispensable for infection, at least in the context of a cotE mutation. This has implications for both the pathophysiology of the disease and next-generation therapeutics. CotH, which directs the assembly of an important subset of coat proteins in B. subtilis, also directs coat protein deposition in B. anthracis. Additionally, however, in B. anthracis, CotH effects germination; in its absence, more spores germinate than in the wild type. We also found that SpoIVA has a critical role in directing the assembly of the coat and exosporium to an area around the forespore. This function is very similar to that of the B. subtilis orthologue, which directs the assembly of the coat to the forespore. These results show that while B. anthracis and B. subtilis rely on a core of conserved morphogenetic proteins to guide coat formation, these proteins may also be important for species-specific differences in coat morphology. We further hypothesize that variations in conserved morphogenetic coat proteins may play roles in taxonomic variation among species.


Infection and Immunity | 2007

Bacillus anthracis Spores of the bclA Mutant Exhibit Increased Adherence to Epithelial Cells, Fibroblasts, and Endothelial Cells but Not to Macrophages

Joel A. Bozue; Krishna Moody; Christopher K. Cote; Bradley G. Stiles; Arthur M. Friedlander; Susan L. Welkos; Martha L. Hale

ABSTRACT Bacillus anthracis is the causative agent of anthrax, and the spore form of the bacterium represents the infectious particle introduced into a host. The spore is surrounded by an exosporium, a loose-fitting membrane composed of proteins and carbohydrates from which hair-like projections extend. These projections are composed mainly of BclA (Bacillus-collagen-like protein of B. anthracis). To date, exact roles of the exosporium structure and BclA protein remain undetermined. We examined differences in spore binding of wild-type Ames and a bclA mutant of B. anthracis to bronchial epithelial cells as well as to the following other epithelial cells: A549, CHO, and Caco-2 cells; the IMR-90 fibroblast line; and human umbilical vein vascular endothelium cells. The binding of wild-type Ames spores to bronchial epithelial cells appeared to be a dose-dependent, receptor-ligand-mediated event. There were similar findings for the bclA mutant, with an additional nonspecific binding component likely leading to significantly more adherence to all nonprofessional phagocytic cell types. In contrast, we detected no difference in adherence and uptake of spores by macrophages for either the wild-type Ames or the bclA mutant strain. These results suggest that one potential role of the BclA fibers may be to inhibit nonspecific interactions between B. anthracis spores with nonprofessional phagocytic cells and thus direct the spores towards uptake by macrophages during initiation of infection in mammals.


Infection and Immunity | 2007

Fully Virulent Bacillus anthracis Does Not Require the Immunodominant Protein BclA for Pathogenesis

Joel A. Bozue; Christopher K. Cote; Krishna Moody; Susan L. Welkos

ABSTRACT The BclA protein is the immunodominant epitope on the surface of Bacillus anthracis spores; however, its roles in pathogenesis are unclear. We constructed a BclA deletion mutant (bclA) of the fully virulent Ames strain. This derivative retained full virulence in several small-animal models of infection despite the bclA deletion.


Vaccine | 2010

TNFα and IFNγ contribute to F1/LcrV-targeted immune defense in mouse models of fully virulent pneumonic plague.

Jr-Shiuan Lin; Steven Park; Jeffrey J. Adamovicz; Jim Hill; James B. Bliska; Christopher K. Cote; David S. Perlin; Kei Amemiya; Stephen T. Smiley

Immunization with the Yersinia pestis F1 and LcrV proteins improves survival in mouse and non-human primate models of pneumonic plague. F1- and LcrV-specific antibodies contribute to protection, however, the mechanisms of antibody-mediated defense are incompletely understood and serum antibody titers do not suffice as quantitative correlates of protection. Previously we demonstrated roles for tumor necrosis factor-alpha (TNFα) and gamma-interferon (IFNγ) during defense against conditionally attenuated pigmentation (pgm) locus-negative Y. pestis. Here, using intranasal challenge with fully virulent pgm-positive Y. pestis strain CO92, we demonstrate that neutralizing TNFα and IFNγ interferes with the capacity of therapeutically administered F1- or LcrV-specific antibody to reduce bacterial burden and increase survival. Moreover, using Y. pestis strain CO92 in an aerosol challenge model, we demonstrate that neutralizing TNFα and IFNγ interferes with protection conferred by immunization with recombinant F1-LcrV fusion protein vaccine (p<0.0005). These findings establish that TNFα and IFNγ contribute to protection mediated by pneumonic plague countermeasures targeting F1 and LcrV, and suggest that an individuals capacity to produce these cytokines in response to Y. pestis challenge will be an important co-determinant of antibody-mediated defense against pneumonic plague.


Journal of Bacteriology | 2009

Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination

Kari M. Severson; Michael Mallozzi; Joel A. Bozue; Susan L. Welkos; Christopher K. Cote; Katherine L. Knight; Adam Driks

The Bacillus anthracis spore is the causative agent of the disease anthrax. The outermost structure of the B. anthracis spore, the exosporium, is a shell composed of approximately 20 proteins. The function of the exosporium remains poorly understood and is an area of active investigation. In this study, we analyzed the previously identified but uncharacterized exosporium protein ExsK. We found that, in contrast to other exosporium proteins, ExsK is present in at least two distinct locations, i.e., the spore surface as well as a more interior location underneath the exosporium. In spores that lack the exosporium basal layer protein ExsFA/BxpB, ExsK fails to encircle the spore and instead is present at only one spore pole, indicating that ExsK assembly to the spore is partially dependent on ExsFA/BxpB. In spores lacking the exosporium surface protein BclA, ExsK fails to mature into high-molecular-mass species observed in wild-type spores. These data suggest that the assembly and maturation of ExsK within the exosporium are dependent on ExsFA/BxpB and BclA. We also found that ExsK is not required for virulence in murine and guinea pig models but that it does inhibit germination. Based on these data, we propose a revised model of exosporium maturation and assembly and suggest a novel role for the exosporium in germination.


Microbes and Infection | 2008

Early interactions between fully virulent Bacillus anthracis and macrophages that influence the balance between spore clearance and development of a lethal infection

Christopher K. Cote; Tracy L. DiMezzo; David J. Banks; Kenneth A. Bradley; Susan L. Welkos

The role of macrophages in the pathogenesis of anthrax is unresolved. Macrophages are believed to support the initiation of infection by Bacillus anthracis spores, yet are also sporicidal. Furthermore, it is believed that the anthrax toxins suppress normal macrophage function. However, the significance of toxin effects on macrophages has not been addressed in an in vivo infection model. We used mutant derivatives of murine macrophage RAW264.7 cells that are toxin receptor-negative (R3D) to test the role of toxin-targeting of macrophages during a challenge with spores of the Ames strain of B. anthracis in both in vivo and in vitro models. We found that the R3D cells were able to control challenge with Ames when mice were inoculated with the cells prior to spore challenge. These findings were confirmed in vitro by high dose spore infection of macrophages. Interestingly, whereas the R3D cells provided a significantly greater survival advantage against spores than did the wild type RAW264.7 cells or R3D-complemented cells, the protection afforded the mutant and wild type cells was equivalent against a bacillus challenge. The findings appear to be the first specific test of the role of toxin targeting of macrophages during infection with B. anthracis spores.


Infection and Immunity | 2011

Role of Purine Biosynthesis in Bacillus anthracis Pathogenesis and Virulence

Amy Jenkins; Christopher K. Cote; Nancy A. Twenhafel; Tod J. Merkel; Joel A. Bozue; Susan L. Welkos

ABSTRACT Bacillus anthracis, the etiological agent of anthrax, is a spore-forming, Gram-positive bacterium and a category A biothreat agent. Screening of a library of transposon-mutagenized B. anthracis spores identified a mutant displaying an altered phenotype that harbored a mutated gene encoding the purine biosynthetic enzyme PurH. PurH is a bifunctional protein that catalyzes the final steps in the biosynthesis of the purine IMP. We constructed and characterized defined purH mutants of the virulent B. anthracis Ames strain. The virulence of the purH mutants was assessed in guinea pigs, mice, and rabbits. The spores of the purH mutants were as virulent as wild-type spores in mouse intranasal and rabbit subcutaneous infection models but were partially attenuated in a mouse intraperitoneal model. In contrast, the purH mutant spores were highly attenuated in guinea pigs regardless of the administration route. The reduced virulence in guinea pigs was not due solely to a germination defect, since both bacilli and toxins were detected in vivo, suggesting that the significant attenuation was associated with a growth defect in vivo. We hypothesize that an intact purine biosynthetic pathway is required for the virulence of B. anthracis in guinea pigs.


Microbiology | 2008

Analysis of a novel spore antigen in Bacillus anthracis that contributes to spore opsonization.

Christopher K. Cote; Joel A. Bozue; K. L. Moody; Tracy L. DiMezzo; C. E. Chapman; Susan L. Welkos

The significance of Bacillus anthracis as an agent of bioterrorism has been well established. An understanding of both the pathogenesis and the host response is required to elucidate approaches to more rapidly detect and effectively prevent or treat anthrax. Current vaccine strategies are focused primarily on production of antibodies against the protective antigen components of the anthrax toxins, which are secreted by the bacilli. A better understanding of the dynamic morphology of the dormant and germinating spore and its interaction with the host immune system could be important in developing an optimally efficacious anthrax vaccine. A spore-associated protein was identified that was specific to the Bacillus cereus group of bacteria and referred to as spore opsonization-associated antigen A (SoaA). Immuno-electron microscopy localized this protein to the area of the cortex beneath the coat of the dormant spore. Although our data suggested that SoaA was found below the coat layers of the ungerminated spore, SoaA was involved in the interaction of spores with macrophages shortly after infection. To investigate further the specific properties of the SoaA protein, the soaA gene was inactivated in the B. anthracis Ames strain. The SoaA protein in the Ames strain of B. anthracis increased the phagocytic uptake of the spores in the presence of anti-spore antibodies. Unlike the wild-type strain, the mutant soaA : : Kan strain was not readily opsonized by anti-spore antibodies. While the mutant spores retained characteristic resistance properties in vitro and virulence in vivo, the soaA : : Kan mutant strain was significantly less suited for survival in vivo when competed against the wild-type Ames strain.

Collaboration


Dive into the Christopher K. Cote's collaboration.

Top Co-Authors

Avatar

Susan L. Welkos

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Joel A. Bozue

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Kei Amemiya

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Patricia L. Worsham

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Anna K. Snyder

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher P. Klimko

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita V. M. Rio

West Virginia University

View shared research outputs
Researchain Logo
Decentralizing Knowledge