Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel A. Bozue is active.

Publication


Featured researches published by Joel A. Bozue.


Journal of Immunology | 2010

Cutting Edge: Resistance to Bacillus anthracis Infection Mediated by a Lethal Toxin Sensitive Allele of Nalp1b/Nlrp1b

Jill K. Terra; Christopher K. Cote; Amy Jenkins; Joel A. Bozue; Susan L. Welkos; Steven M. LeVine; Kenneth A. Bradley

Pathogenesis of Bacillus anthracis is associated with the production of lethal toxin (LT), which activates the murine Nalp1b/Nlrp1b inflammasome and induces caspase-1–dependent pyroptotic death in macrophages and dendritic cells. In this study, we investigated the effect of allelic variation of Nlrp1b on the outcome of LT challenge and infection by B. anthracis spores. Nlrp1b allelic variation did not alter the kinetics or pathology of end-stage disease induced by purified LT, suggesting that, in contrast to previous reports, macrophage lysis does not contribute directly to LT-mediated pathology. However, animals expressing a LT-sensitive allele of Nlrp1b showed an early inflammatory response to LT and increased resistance to infection by B. anthracis. Data presented here support a model whereby LT-mediated activation of Nlrp1b and subsequent lysis of macrophages is not a mechanism used by B. anthracis to promote virulence, but rather a protective host-mediated innate immune response.


PLOS ONE | 2011

Identification of Small-Molecule Inhibitors of Yersinia pestis Type III Secretion System YscN ATPase

Wieslaw Swietnicki; Daniel Carmany; Michael Retford; Mark Guelta; Russell Dorsey; Joel A. Bozue; Michael S. Lee; Mark A. Olson

Yersinia pestis is a Gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC50 values below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at µM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species.


Microbiology | 2008

Analysis of a novel spore antigen in Bacillus anthracis that contributes to spore opsonization.

Christopher K. Cote; Joel A. Bozue; K. L. Moody; Tracy L. DiMezzo; C. E. Chapman; Susan L. Welkos

The significance of Bacillus anthracis as an agent of bioterrorism has been well established. An understanding of both the pathogenesis and the host response is required to elucidate approaches to more rapidly detect and effectively prevent or treat anthrax. Current vaccine strategies are focused primarily on production of antibodies against the protective antigen components of the anthrax toxins, which are secreted by the bacilli. A better understanding of the dynamic morphology of the dormant and germinating spore and its interaction with the host immune system could be important in developing an optimally efficacious anthrax vaccine. A spore-associated protein was identified that was specific to the Bacillus cereus group of bacteria and referred to as spore opsonization-associated antigen A (SoaA). Immuno-electron microscopy localized this protein to the area of the cortex beneath the coat of the dormant spore. Although our data suggested that SoaA was found below the coat layers of the ungerminated spore, SoaA was involved in the interaction of spores with macrophages shortly after infection. To investigate further the specific properties of the SoaA protein, the soaA gene was inactivated in the B. anthracis Ames strain. The SoaA protein in the Ames strain of B. anthracis increased the phagocytic uptake of the spores in the presence of anti-spore antibodies. Unlike the wild-type strain, the mutant soaA : : Kan strain was not readily opsonized by anti-spore antibodies. While the mutant spores retained characteristic resistance properties in vitro and virulence in vivo, the soaA : : Kan mutant strain was significantly less suited for survival in vivo when competed against the wild-type Ames strain.


Microbiology | 2009

Localization and assembly of proteins comprising the outer structures of the Bacillus anthracis spore.

Rebecca Giorno; Michael Mallozzi; Joel A. Bozue; Krishna Sulayman Moody; Alex Slack; Dengli Qiu; Rong Wang; Arthur M. Friedlander; Susan L. Welkos; Adam Driks

Bacterial spores possess a series of concentrically arranged protective structures that contribute to dormancy, survival and, ultimately, germination. One of these structures, the coat, is present in all spores. In Bacillus anthracis, however, the spore is surrounded by an additional, poorly understood, morphologically complex structure called the exosporium. Here, we characterize three previously discovered exosporium proteins called ExsFA (also known as BxpB), ExsFB (a highly related paralogue of exsFA/bxpB) and IunH (similar to an inosine-uridine-preferring nucleoside hydrolase). We show that in the absence of ExsFA/BxpB, the exosporium protein BclA accumulates asymmetrically to the forespore pole closest to the midpoint of the sporangium (i.e. the mother-cell-proximal pole of the forespore), instead of uniformly encircling the exosporium. ExsFA/BxpB may also have a role in coat assembly, as mutant spore surfaces lack ridges seen in wild-type spores and have a bumpy appearance. ExsFA/BxpB also has a modest but readily detected effect on germination. Nonetheless, an exsFA/bxpB mutant strain is fully virulent in both intramuscular and aerosol challenge models in Guinea pigs. We show that the pattern of localization of ExsFA/BxpB-GFP is a ring, consistent with a location for this protein in the basal layer of the exosporium. In contrast, ExsFB-GFP fluorescence is a solid oval, suggesting a distinct subcellular location for ExsFB-GFP. We also used these fusion proteins to monitor changes in the subcellular locations of these proteins during sporulation. Early in sporulation, both fusions were present throughout the mother cell cytoplasm. As sporulation progressed, GFP fluorescence moved from the mother cell cytoplasm to the forespore surface and formed either a ring of fluorescence, in the case of ExsFA/BxpB, or a solid oval of fluorescence, in the case of ExsFB. IunH-GFP also resulted in a solid oval of fluorescence. We suggest the interpretation that at least some ExsFB-GFP and IunH-GFP resides in the region between the coat and the exosporium, called the interspace.


PLOS ONE | 2015

Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays.

Susan L. Welkos; Christopher P. Klimko; Steven J. Kern; Jeremy J. Bearss; Joel A. Bozue; Robert C. Bernhards; Sylvia R. Trevino; David M. Waag; Kei Amemiya; Patricia L. Worsham; Christopher K. Cote

Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the macrophage phagocytosis assay. Strains which were more virulent for mice (e.g., HBPU10304a) were often less virulent in the macrophage assays, as determined by several parameters such as intracellular bacterial replication and host cell cytotoxicity.


Fems Microbiology Letters | 2008

Characterization of a Bacillus anthracis spore coat-surface protein that influences coat-surface morphology

Michael Mallozzi; Joel A. Bozue; Rebecca Giorno; Krishna Sulayman Moody; Alex Slack; Christopher K. Cote; Dengli Qiu; Rong Wang; Peter T. McKenney; Erh Min Lai; Janine R. Maddock; Arthur M. Friedlander; Susan L. Welkos; Patrick Eichenberger; Adam Driks

Bacterial spores are encased in a multilayered proteinaceous shell, called the coat. In many Bacillus spp., the coat protects against environmental assault and facilitates germination. In Bacillus anthracis, the spore is the etiological agent of anthrax, and the functions of the coat likely contribute to virulence. Here, we characterize a B. anthracis spore protein, called Cotbeta, which is encoded only in the genomes of the Bacillus cereus group. We found that Cotbeta is synthesized specifically during sporulation and is assembled onto the spore coat surface. Our analysis of a cotbeta null mutant in the Sterne strain reveals that Cotbeta has a role in determining coat-surface morphology but does not detectably affect germination. In the fully virulent Ames strain, a cotbeta null mutation has no effect on virulence in a murine model of B. anthracis infection.


Microbiology | 2010

Processing, assembly and localization of a Bacillus anthracis spore protein.

K. L. Moody; Adam Driks; G. L. Rother; Christopher K. Cote; E. E. Brueggemann; H. B. Hines; Arthur M. Friedlander; Joel A. Bozue

All Bacillus spores are encased in macromolecular shells. One of these is a proteinacious shell called the coat that, in Bacillus subtilis, provides critical protective functions. The Bacillus anthracis spore is the infectious particle for the disease anthrax. Therefore, the coat is of particular interest because it may provide essential protective functions required for the appearance of anthrax. Here, we analyse a protein component of the spore outer layers that was previously designated BxpA. Our data indicate that a significant amount of BxpA is located below the spore coat and associated with the cortex. By SDS-PAGE, BxpA migrates as a 9 kDa species when extracted from Sterne strain spores, and as 11 and 14 kDa species from Ames strain spores, even though it has predicted masses of 27 and 29 kDa, respectively, in these two strains. We investigated the possibility that BxpA is subject to post-translational processing as previously suggested. In B. subtilis, a subset of coat proteins is proteolysed or cross-linked by the spore proteins YabG or Tgl, respectively. To investigate the possibility that similar processing occurs in B. anthracis, we generated mutations in the yabG or tgl genes in the Sterne and Ames strains and analysed the consequences for BxpA assembly by SDS-PAGE. We found that in a tgl mutant of B. anthracis, the apparent mass of BxpA increased. This is consistent with the possibility that Tgl directs the cross-linking of BxpA into a form that normally does not enter the gel. Unexpectedly, the apparent mass of BxpA also increased in a yabG mutant, suggesting a relatively complex role for proteolysis in spore protein maturation in B. anthracis. These data reveal a previously unobserved event in spore protein maturation in B. anthracis. We speculate that proteolysis and cross-linking are ubiquitous spore assembly mechanisms throughout the genus Bacillus.


Journal of Applied Microbiology | 2013

D‐cycloserine or similar physiochemical compounds may be uniquely suited for use in Bacillus anthracis spore decontamination strategies

T.O. Omotade; J.D. Heffron; C.P. Klimko; C.L. Marchand; L.L. Miller; S.A. Halasahoris; Joel A. Bozue; Susan L. Welkos; Christopher K. Cote

As observed in the aftermath of the anthrax attacks of 2001, decontamination and remediation of a site contaminated by the accidental or intentional release of Bacillus anthracis spores is difficult, costly and potentially damaging to the environment. The identification of novel strategies that neutralize the threat of spores while minimizing environmental damage remains a high priority. We investigated the efficacy of d‐cycloserine (DCS), an antibiotic and inhibitor of the spore‐associated enzyme (alanine racemase) responsible for converting l‐alanine to d‐alanine, as a spore germination enhancer and antimicrobial agent.


PLOS Pathogens | 2011

Allelic variation on murine chromosome 11 modifies host inflammatory responses and resistance to Bacillus anthracis.

Jill K. Terra; Christopher K. Cote; Amy Jenkins; Joel A. Bozue; Susan L. Welkos; Ragini Bhargava; Chi-Lee Ho; Margarete Mehrabian; Calvin Pan; Aldons J. Lusis; Richard C. Davis; Steven M. LeVine; Kenneth A. Bradley

Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36–74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT.


Frontiers in Cellular and Infection Microbiology | 2016

Phenotypic Characterization of a Novel Virulence-Factor Deletion Strain of Burkholderia mallei That Provides Partial Protection against Inhalational Glanders in Mice

Joel A. Bozue; Sidhartha Chaudhury; Kei Amemiya; Jennifer Chua; Christopher K. Cote; Ronald G. Toothman; Jennifer L. Dankmeyer; Christopher P. Klimko; Catherine L. Wilhelmsen; Jolynn W. Raymond; Nela Zavaljevski; Jaques Reifman; Anders Wallqvist

Burkholderia mallei (Bm) is a highly infectious intracellular pathogen classified as a category B biological agent by the Centers for Disease Control and Prevention. After respiratory exposure, Bm establishes itself within host macrophages before spreading into major organ systems, which can lead to chronic infection, sepsis, and death. Previously, we combined computational prediction of host-pathogen interactions with yeast two-hybrid experiments and identified novel virulence factor genes in Bm, including BMAA0553, BMAA0728 (tssN), and BMAA1865. In the present study, we used recombinant allelic exchange to construct deletion mutants of BMAA0553 and tssN (ΔBMAA0553 and ΔTssN, respectively) and showed that both deletions completely abrogated virulence at doses of >100 times the LD50 of the wild-type Bm strain. Analysis of ΔBMAA0553- and ΔTssN-infected mice showed starkly reduced bacterial dissemination relative to wild-type Bm, and subsequent in vitro experiments characterized pathogenic phenotypes with respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed in vitro and in vivo phenotypes, we explored the use of ΔTssN as a candidate live-attenuated vaccine. Mice immunized with aerosolized ΔTssN showed a 21-day survival rate of 67% after a high-dose aerosol challenge with the wild-type Bm ATCC 23344 strain, compared to a 0% survival rate for unvaccinated mice. However, analysis of histopathology and bacterial burden showed that while the surviving vaccinated mice were protected from acute infection, Bm was still able to establish a chronic infection. Vaccinated mice showed a modest IgG response, suggesting a limited potential of ΔTssN as a vaccine candidate, but also showed prolonged elevation of pro-inflammatory cytokines, underscoring the role of cellular and innate immunity in mitigating acute infection in inhalational glanders.

Collaboration


Dive into the Joel A. Bozue's collaboration.

Top Co-Authors

Avatar

Christopher K. Cote

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Susan L. Welkos

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Arthur M. Friedlander

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Adam Driks

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Amy Jenkins

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Christopher P. Klimko

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Alex Slack

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Angelo Scorpio

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Dengli Qiu

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jared D. Heffron

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge