Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher K. Tuggle is active.

Publication


Featured researches published by Christopher K. Tuggle.


web science | 1995

THE PIGMAP CONSORTIUM LINKAGE MAP OF THE PIG (SUS SCROFA).

Alan Archibald; Chris Haley; J. F. Brown; S. Couperwhite; H A McQueen; D. Nicholson; W. Coppieters; A. Van de Weghe; A. Stratil; Anne Katrine Winterø; Merete Fredholm; N. J. Larsen; Vivi Hunnicke Nielsen; Denis Milan; N. Woloszyn; Annie Robic; M. Dalens; Juliette Riquet; J. Gellin; J. C. Caritez; G. Burgaud; L. Ollivier; J. P. Bidanel; Marcel Vaiman; Christine Renard; H. Geldermann; R. Davoli; D. Ruyter; E. J. M. Verstege; M.A.M. Groenen

A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.


Mammalian Genome | 1997

Mapping of the melatonin receptor 1a (MTNR1A) gene in pigs, sheep, and cattle.

Lori A. Messer; L. Wang; Christopher K. Tuggle; M. Yerle; Patrick Chardon; Daniel Pomp; James E. Womack; W. Barendse; A. M. Crawford; David R. Notter; Max F. Rothschild

and Implications Human and sheep Melatonin receptor 1a (MTNR1A) gene information was used to clone a portion of the coding region of this gene in pigs, and to identify polymorphisms of the gene for its assignment to both the genetic linkage and physical maps. MTNR1A maps to pig chromosome 17, establishing a new region of conserved synteny between this chromosome and human chromosome 4. Furthermore, we have assigned MTNR1A to bovine chromosome 27 and sheep chromosome 26. The addition of genes like MTNR1A to livestock genome maps allows questions about evolutionary events and the genetic basis for quantitative traits in livestock to be addressed.


Genome Biology | 2015

Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project

Leif Andersson; Alan Archibald; C. D. K. Bottema; Rudiger Brauning; Shane C. Burgess; Dave Burt; E. Casas; Hans H. Cheng; Laura Clarke; Christine Couldrey; Brian P. Dalrymple; Christine G. Elsik; Sylvain Foissac; Elisabetta Giuffra; M.A.M. Groenen; Ben J. Hayes; LuSheng S Huang; Hassan Khatib; James W. Kijas; Heebal Kim; Joan K. Lunney; Fiona M. McCarthy; J. C. McEwan; Stephen S. Moore; Bindu Nanduri; Cedric Notredame; Yniv Palti; Graham Plastow; James M. Reecy; G. A. Rohrer

We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.


BMC Genomics | 2013

Structural and functional annotation of the porcine immunome

Harry Dawson; Jane Loveland; Géraldine Pascal; James Gilbert; Hirohide Uenishi; Katherine Mann; Yongming Sang; Jie Zhang; Denise R. Carvalho-Silva; Toby Hunt; Matthew Hardy; Zhi-Liang Hu; Shuhong Zhao; Anna Anselmo; Hiroki Shinkai; Celine Chen; Bouabid Badaoui; Daniel Berman; Clara Amid; Mike Kay; David Lloyd; Catherine Snow; Takeya Morozumi; Ryan Pei-Yen Cheng; Megan Bystrom; Ronan Kapetanovic; John C. Schwartz; Ranjit Singh Kataria; Matthew Astley; Eric Fritz

BackgroundThe domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems.ResultsThe Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome.ConclusionsThis extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig’s adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response.


Journal of Immunology | 2012

Pig Bone Marrow-Derived Macrophages Resemble Human Macrophages in Their Response to Bacterial Lipopolysaccharide

Ronan Kapetanovic; Lynsey Fairbairn; Dario Beraldi; David P. Sester; Alan Archibald; Christopher K. Tuggle; David A. Hume

Mouse bone marrow-derived macrophages (BMDM) grown in M-CSF (CSF-1) have been used widely in studies of macrophage biology and the response to TLR agonists. We investigated whether similar cells could be derived from the domestic pig using human rCSF-1 and whether porcine macrophages might represent a better model of human macrophage biology. Cultivation of pig bone marrow cells for 5–7 d in presence of human rCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, and CD172a), were potent phagocytic cells, and produced TNF in response to LPS. Pig BMDM could be generated from bone marrow cells that had been stored frozen and thawed so that multiple experiments can be performed on samples from a single animal. Gene expression in pig BMDM from outbred animals responding to LPS was profiled using Affymetrix microarrays. The temporal cascade of inducible and repressible genes more closely resembled the known responses of human than mouse macrophages, sharing with humans the regulation of genes involved in tryptophan metabolism (IDO, KYN), lymphoattractant chemokines (CCL20, CXCL9, CXCL11, CXCL13), and the vitamin D3-converting enzyme, Cyp27B1. Conversely, in common with published studies of human macrophages, pig BMDM did not strongly induce genes involved in arginine metabolism, nor did they produce NO. These results establish pig BMDM as an alternative tractable model for the study of macrophage transcriptional control.


BMC Biology | 2012

A gene expression atlas of the domestic pig

Tom C. Freeman; Alasdair Ivens; J. Kenneth Baillie; Dario Beraldi; Mark W. Barnett; David A. Dorward; Alison Downing; Lynsey Fairbairn; Ronan Kapetanovic; Sobia Raza; Andru Tomoiu; Ramiro Alberio; Chunlei Wu; Andrew I. Su; Kim M. Summers; Christopher K. Tuggle; Alan Archibald; David A. Hume

BackgroundThis work describes the first genome-wide analysis of the transcriptional landscape of the pig. A new porcine Affymetrix expression array was designed in order to provide comprehensive coverage of the known pig transcriptome. The new array was used to generate a genome-wide expression atlas of pig tissues derived from 62 tissue/cell types. These data were subjected to network correlation analysis and clustering.ResultsThe analysis presented here provides a detailed functional clustering of the pig transcriptome where transcripts are grouped according to their expression pattern, so one can infer the function of an uncharacterized gene from the company it keeps and the locations in which it is expressed. We describe the overall transcriptional signatures present in the tissue atlas, where possible assigning those signatures to specific cell populations or pathways. In particular, we discuss the expression signatures associated with the gastrointestinal tract, an organ that was sampled at 15 sites along its length and whose biology in the pig is similar to human. We identify sets of genes that define specialized cellular compartments and region-specific digestive functions. Finally, we performed a network analysis of the transcription factors expressed in the gastrointestinal tract and demonstrate how they sub-divide into functional groups that may control cellular gastrointestinal development.ConclusionsAs an important livestock animal with a physiology that is more similar than mouse to man, we provide a major new resource for understanding gene expression with respect to the known physiology of mammalian tissues and cells. The data and analyses are available on the websites http://biogps.org and http://www.macrophages.com/pig-atlas.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency

Sender Lkhagvadorj; Long Qu; Weiguo Cai; Oliver P. Couture; C. Richard Barb; Gary J. Hausman; Dan Nettleton; Lloyd L. Anderson; Jack C. M. Dekkers; Christopher K. Tuggle

Residual feed intake (RFI) is a measure of feed efficiency, in which low RFI denotes improved feed efficiency. Caloric restriction (CR) is associated with feed efficiency in livestock species and to human health benefits, such as longevity and cancer prevention. We have developed pig lines that differ in RFI, and we are interested in identifying the genes and pathways that underlie feed efficiency. Prepubertal Yorkshire gilts with low RFI (n = 10) or high RFI (n = 10) were fed ad libitum or fed at restricted intake of 80% of maintenance energy requirements for 8 days. We measured serum metabolites and hormones and generated transcriptional profiles of liver and subcutaneous adipose tissue on these animals. Overall, 6,114 genes in fat and 305 genes in liver were differentially expressed (DE) in response to CR, and 311 genes in fat and 147 genes in liver were DE due to RFI differences. Pathway analyses of CR-induced DE genes indicated a dramatic switch to a conservation mode of energy usage by down-regulating lipogenesis and steroidogenesis in both liver and fat. Interestingly, CR altered expression of genes in immune and cell cycle/apoptotic pathways in fat, which may explain part of the CR-driven lifespan enhancement. In silico analysis of transcription factors revealed ESR1 as a putative regulator of the adaptive response to CR, as several targets of ESR1 in our DE fat genes were annotated as cell cycle/apoptosis genes. The lipid metabolic pathway was overrepresented by down-regulated genes due to both CR and low RFI. We propose a common energy conservation mechanism, which may be controlled by PPARA, PPARG, and/or CREB in both CR and feed-efficient pigs.


Physiological Genomics | 2009

Identification of differential gene expression during porcine conceptus rapid trophoblastic elongation and attachment to uterine luminal epithelium

Jason W. Ross; Morgan D. Ashworth; Daniel R. Stein; Oliver P. Couture; Christopher K. Tuggle; Rodney D. Geisert

Early embryonic development in the pig is characterized by a rapid elongation of the conceptus trophectoderm on days 11-12 of gestation. Initially, the conceptus trophoblast is morphologically rearranged from a 10-mm sphere into a tubular shape, transitioning into a thin filamentous form >150 mm in length in 2-3 h, followed by continued expansion within the uterine lumen for several days. Conceptus elongation is critical for establishing adequate placental surface area needed for embryo and fetal survival throughout gestation. The objective of this study was to characterize conceptus gene expression during trophoblastic elongation and the early attachment to the uterine endometrium on days 11-14 of gestation with the GeneChip Porcine Genome Array. In all, 3,759 different probe sets were statistically different in at least one comparison [spherical vs. tubular, spherical vs. day 12 filamentous (D12F), spherical vs. day 14 filamentous (D14F), tubular vs. D12F, tubular vs. D14F, and D12F vs. D14F]. When restricted to the spherical vs. D12F and D12F vs. D14F comparisons, 482 and 232 genes, respectively, were statistically different with greater than twofold change in expression. Utilization of k-means clustering, in addition to the Database for Annotation, Visualization, and Integrated Discovery (DAVID), identified genes of interest. Quantitative RT-PCR expression profiles for interferon-gamma (IFNG), heat shock protein 27 kDa (HSPB1), angiomotin, B-cell linker (BLNK), chemokine ligand 14 (CXCL14), parathyroid hormone-like hormone (PTHLH), and maspin were supportive of the GeneChip Porcine Genome Array data.


BMC Genomics | 2010

Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin.

Ceren Ciraci; Christopher K. Tuggle; Michael J. Wannemuehler; Dan Nettleton; Susan J. Lamont

BackgroundMacrophages play essential roles in both innate and adaptive immune responses. Bacteria require endotoxin, a complex lipopolysaccharide, for outer membrane permeability and the host interprets endotoxin as a signal to initiate an innate immune response. The focus of this study is kinetic and global transcriptional analysis of the chicken macrophage response to in vitro stimulation with endotoxin from Salmonellatyphimurium-798.ResultsThe 38535-probeset Affymetrix GeneChip Chicken Genome array was used to profile transcriptional response to endotoxin 1, 2, 4, and 8 hours post stimulation (hps). Using a maximum FDR (False Discovery Rate) of 0.05 to declare genes as differentially expressed (DE), we found 13, 33, 1761 and 61 DE genes between endotoxin-stimulated versus non-stimulated cells at 1, 2, 4 and 8 hps, respectively. QPCR demonstrated that endotoxin exposure significantly affected the mRNA expression of IL1B, IL6, IL8, and TLR15, but not IL10 and IFNG in HD 11 cells. Ingenuity Pathway Analysis showed that 10% of the total DE genes were involved in inflammatory response. Three, 9.7, 96.8, and 11.8% of the total DE inflammatory response genes were significantly differentially expressed with endotoxin stimulation at 1, 2, 4 and 8 hps, respectively. The NFKBIA, IL1B, IL8 and CCL4 genes were consistently induced at all times after endotoxin treatment. NLRC5 (CARD domain containing, NOD-like receptor family, RCJMB04_18i2), an intracellular receptor, was induced in HD11 cells treated with endotoxin.ConclusionsAs above using an in vitro model of chicken response to endotoxin, our data revealed the kinetics of gene networks involved in host response to endotoxin and extend the known complexity of networks in chicken immune response to Gram-negative bacteria such as Salmonella. The induction of NFKBIA, IL1B, IL8, CCL4 genes is a consistent signature of host response to endotoxin over time. We make the first report of induction of a NOD-like receptor family member in response to Salmonella endotoxin in chicken macrophages.


Mammalian Genome | 2003

EST-based gene discovery in pig: virtual expression patterns and comparative mapping to human

Christopher K. Tuggle; Jon A. Green; Carolyn Jean Fitzsimmons; Rami J. Woods; Randall S. Prather; Sergei Malchenko; Bento Soares; Tamara A. Kucaba; Keith Crouch; Christina Smith; Dylan Tack; Natalie L. Robinson; Brian O'Leary; Todd E. Scheetz; Thomas L. Casavant; Daniel Pomp; Brad J. Edeal; Y. Zhang; Max F. Rothschild; Kevin Garwood; William Beavis

A molecular understanding of porcine reproduction is of biological interest and economic importance. Our Midwest Consortium has produced cDNA libraries containing the majority of genes expressed in major female reproductive tissues, and we have deposited into public databases 21,499 expressed sequence tag (EST) gene sequences from the 3′ end of clones from these libraries. These sequences represent 10,574 different genes, based on sequence comparison among these data, and comparison with existing porcine ESTs and genes indicate as many as 4652 of these EST clusters are novel. Insilico analysis identified sequences that are expressed in specific pig tissues or organs and confirmed the broad expression in pig for many genes ubiquitously expressed in human tissues. Furthermore, we have developed computer software to identify sequence similarity of these pig genes with their human counterparts, and to extract the mapping information of these human homologues from genome databases. We demonstrate the utility of this software for comparative mapping by localizing 61 genes on the porcine physical map for Chromosomes (Chrs) 5, 10, and 14.

Collaboration


Dive into the Christopher K. Tuggle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan K. Lunney

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Wang

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. S. Sun

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Long Qu

Iowa State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge