Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan Nettleton is active.

Publication


Featured researches published by Dan Nettleton.


Plant Physiology | 2002

Agrobacterium tumefaciens-Mediated Transformation of Maize Embryos Using a Standard Binary Vector System

Bronwyn Frame; Huixia Shou; Rachel Kerina Chikwamba; Zhanyuan Zhang; Chengbin Xiang; Tina M. Fonger; Sue Ellen Pegg; Baochun Li; Dan Nettleton; Deqing Pei; Kan Wang

We have achieved routine transformation of maize (Zea mays) using an Agrobacterium tumefaciensstandard binary (non-super binary) vector system. Immature zygotic embryos of the hybrid line Hi II were infected with A. tumefaciens strain EHA101 harboring a standard binary vector and cocultivated in the presence of 400 mg L−1 l-cysteine. Inclusion of l-cysteine in cocultivation medium lead to an improvement in transient β-glucuronidase expression observed in targeted cells and a significant increase in stable transformation efficiency, but was associated with a decrease in embryo response after cocultivation. The average stable transformation efficiency (no. of bialaphos-resistant events recovered per 100 embryos infected) of the present protocol was 5.5%. Southern-blot and progeny analyses confirmed the integration, expression, and inheritance of the bar andgus transgenes in R0, R1, and R2 generations of transgenic events. To our knowledge, this represents the first report in which fertile, stable transgenic maize has been routinely produced using an A. tumefaciensstandard binary vector system.


PLOS Genetics | 2009

Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content

Nathan M. Springer; Kai Ying; Yan-Yan Fu; Tieming Ji; Cheng-Ting Yeh; Yi Jia; Wei-Wei Wu; Todd Richmond; Jacob Kitzman; Heidi Rosenbaum; A. Leonardo Iniguez; W. Brad Barbazuk; Jeffrey A. Jeddeloh; Dan Nettleton

Following the domestication of maize over the past ∼10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop.


The Plant Cell | 2004

Interaction-Dependent Gene Expression in Mla-Specified Response to Barley Powdery Mildew

Rico A. Caldo; Dan Nettleton; Roger P. Wise

Plant recognition of pathogen-derived molecules influences attack and counterattack strategies that affect the outcome of host–microbe interactions. To ascertain the global framework of host gene expression during biotrophic pathogen invasion, we analyzed in parallel the mRNA abundance of 22,792 host genes throughout 36 (genotype × pathogen × time) interactions between barley (Hordeum vulgare) and Blumeria graminis f. sp hordei (Bgh), the causal agent of powdery mildew disease. A split-split-plot design was used to investigate near-isogenic barley lines with introgressed Mla6, Mla13, and Mla1 coiled-coil, nucleotide binding site, Leu-rich repeat resistance alleles challenged with Bgh isolates 5874 (AvrMla6 and AvrMla1) and K1 (AvrMla13 and AvrMla1). A linear mixed model analysis was employed to identify genes with significant differential expression (P value < 0.0001) in incompatible and compatible barley-Bgh interactions across six time points after pathogen challenge. Twenty-two host genes, of which five were of unknown function, exhibited highly similar patterns of upregulation among all incompatible and compatible interactions up to 16 h after inoculation (hai), coinciding with germination of Bgh conidiospores and formation of appressoria. By contrast, significant divergent expression was observed from 16 to 32 hai, during membrane-to-membrane contact between fungal haustoria and host epidermal cells, with notable suppression of most transcripts identified as differentially expressed in compatible interactions. These findings provide a link between the recognition of general and specific pathogen-associated molecules in gene-for-gene specified resistance and support the hypothesis that host-specific resistance evolved from the recognition and prevention of the pathogens suppression of plant basal defense.


Molecular Plant-microbe Interactions | 2007

Developmental Transcript Profiling of Cyst Nematode Feeding Cells in Soybean Roots

Nagabhushana Ithal; Justin Recknor; Dan Nettleton; Tom Maier; Thomas J. Baum; Melissa G. Mitchum

Cyst nematodes of the genus Heterodera are obligate, sedentary endoparasites that have developed highly evolved relationships with specific host plant species. Successful parasitism involves significant physiological and morphological changes to plant root cells for the formation of specialized feeding cells called syncytia. To better understand the molecular mechanisms that lead to the development of nematode feeding cells, transcript profiling was conducted on developing syncytia induced by the soybean cyst nematode Heterodera glycines in soybean roots by coupling laser capture microdissection with high-density oligonucleotide microarray analysis. This approach has identified pathways that may play intrinsic roles in syncytium induction, formation, and function. Our data suggest interplay among phytohormones that likely regulates synchronized changes in the expression of genes encoding cell-wall-modifying proteins. This process appears to be tightly controlled and coordinately regulated with cell wall rigidification processes that may involve lignification of feeding cell walls. Our data also show local downregulation of jasmonic acid biosynthesis and responses in developing syncytia, which suggest a local suppression of plant defense mechanisms. Moreover, we identified genes encoding putative transcription factors and components of signal transduction pathways that may be important in the regulatory processes governing syncytium formation and function. Our analysis provides a broad mechanistic picture that forms the basis for future hypothesis-driven research to understand cyst nematode parasitism and to develop effective management tools against these pathogens.


pacific symposium on biocomputing | 2001

MINING MEDLINE: ABSTRACTS, SENTENCES, OR PHRASES?

Jing Ding; Daniel Berleant; Dan Nettleton; Eve Syrkin Wurtele

A growing body of works address automated mining of biochemical knowledge from digital repositories of scientific literature, such as MEDLINE. Some of these works use abstracts as the unit of text from which to extract facts. Others use sentences for this purpose, while still others use phrases. Here we compare abstracts, sentences, and phrases in MEDLINE using the standard information retrieval performance measures of recall, precision, and effectiveness, for the task of mining interactions among biochemical terms based on term co-occurrence. Results show statistically significant differences that can impact the choice of text unit.


BMC Biology | 2008

Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution

Lex Flagel; Dan Nettleton; Jonathan F. Wendel

BackgroundPolyploidy has played a prominent role in shaping the genomic architecture of the angiosperms. Through allopolyploidization, several modern Gossypium (cotton) species contain two divergent, although largely redundant genomes. Owing to this redundancy, these genomes can play host to an array of evolutionary processes that act on duplicate genes.ResultsWe compared homoeolog (genes duplicated by polyploidy) contributions to the transcriptome of a natural allopolyploid and a synthetic interspecific F1 hybrid, both derived from a merger between diploid species from the Gossypium A-genome and D-genome groups. Relative levels of A- and D-genome contributions to the petal transcriptome were determined for 1,383 gene pairs. This comparison permitted partitioning of homoeolog expression biases into those arising from genomic merger and those resulting from polyploidy. Within allopolyploid Gossypium, approximately 24% of the genes with biased (unequal contributions from the two homoeologous copies) expression patterns are inferred to have arisen as a consequence of genomic merger, indicating that a substantial fraction of homoeolog expression biases occur instantaneously with hybridization. The remaining 76% of biased homoeologs reflect long-term evolutionary forces, such as duplicate gene neofunctionalization and subfunctionalization. Finally, we observed a greater number of genes biased toward the paternal D-genome and that expression biases have tended to increases during allopolyploid evolution.ConclusionOur results indicate that allopolyploidization entails significant homoeolog expression modulation, both immediately as a consequence of genomic merger, and secondarily as a result of long-term evolutionary transformations in duplicate gene expression.


Plant Physiology | 2006

Gene Expression Programs during Shoot, Root, and Callus Development in Arabidopsis Tissue Culture

Ping Che; Sonia Lall; Dan Nettleton; Stephen H. Howell

Shoots can be regenerated from Arabidopsis (Arabidopsis thaliana) root explants in tissue culture through a two-step process requiring preincubation on an auxin-rich callus induction medium. Regenerating tissues can be directed along different developmental pathways leading to the formation of shoots, new roots, or callus by transferring to the appropriate organ induction medium. Using gene-profiling methods, we identified groups of genes that serve as molecular signatures of the different developmental processes, i.e. genes that were specifically up- or down-regulated on one developmental pathway, but not on others. One transcription factor gene that was up-regulated during early shoot development was RAP2.6L (At5g13330), a member of the ERF (ethylene response factor) subfamily B-4 of the ERF/APETALA2 transcription factor gene family. RAP2.6L functions in shoot regeneration because T-DNA knockdown mutations in the gene reduced the efficiency of shoot formation in tissue culture, but not normal embryo or seedling development. RAP2.6L promoter:β-glucuronidase fusions demonstrated that the up-regulation of the gene during shoot regeneration was, at least in part, transcriptionally controlled. The promoter:β-glucuronidase fusions also demonstrated that RAP2.6L expression was localized to the shoot and emerging leaves, but expression declined in the leaf lamina as leaves expanded. T-DNA knockdown mutations in RAP2.6L reduced the expression of many genes that are normally up-regulated during shoot development including CUP-SHAPED COTYLEDON2 that is involved in shoot meristem specification. Thus, RAP2.6L appears to be part of a network involved in regulating the expression of many other genes in shoot regeneration.


Molecular Plant-microbe Interactions | 2007

Parallel Genome-Wide Expression Profiling of Host and Pathogen During Soybean Cyst Nematode Infection of Soybean

Nagabhushana Ithal; Justin Recknor; Dan Nettleton; Leonard Hearne; Tom Maier; Thomas J. Baum; Melissa G. Mitchum

Global analysis of gene expression changes in soybean (Glycine max) and Heterodera glycines (soybean cyst nematode [SCN]) during the course of infection in a compatible interaction was performed using the Affymetrix GeneChip soybean genome array. Among 35,611 soybean transcripts monitored, we identified 429 genes that showed statistically significant differential expression between uninfected and nematode-infected root tissues. These included genes encoding enzymes involved in primary metabolism; biosynthesis of phenolic compounds, lignin, and flavonoids; genes related to stress and defense responses; cell wall modification; cellular signaling; and transcriptional regulation. Among 7,431 SCN transcripts monitored, 1,850 genes showed statistically significant differential expression across different stages of nematode parasitism and development. Differentially expressed SCN genes were grouped into nine different clusters based on their expression profiles during parasitism of soybean roots. The patterns of gene expression we observed in SCN suggest coordinated regulation of genes involved in parasitism. Quantitative real-time reverse-transcription polymerase chain reaction confirmed the results of our microarray analysis. The simultaneous genome-wide analysis of gene expression changes in the host and pathogen during a compatible interaction provides new insights into soybean responses to nematode infection and the first profile of transcript abundance changes occurring in the nematode as it infects and establishes a permanent feeding site within a host plant root.


Genetics | 2004

Controlling the proportion of false positives in multiple dependent tests.

Rohan L. Fernando; Dan Nettleton; B. R. Southey; Jack C. M. Dekkers; Max F. Rothschild; M. Soller

Genome scan mapping experiments involve multiple tests of significance. Thus, controlling the error rate in such experiments is important. Simple extension of classical concepts results in attempts to control the genomewise error rate (GWER), i.e., the probability of even a single false positive among all tests. This results in very stringent comparisonwise error rates (CWER) and, consequently, low experimental power. We here present an approach based on controlling the proportion of false positives (PFP) among all positive test results. The CWER needed to attain a desired PFP level does not depend on the correlation among the tests or on the number of tests as in other approaches. To estimate the PFP it is necessary to estimate the proportion of true null hypotheses. Here we show how this can be estimated directly from experimental results. The PFP approach is similar to the false discovery rate (FDR) and positive false discovery rate (pFDR) approaches. For a fixed CWER, we have estimated PFP, FDR, pFDR, and GWER through simulation under a variety of models to illustrate practical and philosophical similarities and differences among the methods.


Plant Physiology | 2005

Isolation, Characterization, and Pericycle-Specific Transcriptome Analyses of the Novel Maize Lateral and Seminal Root Initiation Mutant rum1

Katrin Woll; Lisa A. Borsuk; Harald Stransky; Dan Nettleton; Frank Hochholdinger

The monogenic recessive maize (Zea mays) mutant rootless with undetectable meristems 1 (rum1) is deficient in the initiation of the embryonic seminal roots and the postembryonic lateral roots at the primary root. Lateral root initiation at the shoot-borne roots and development of the aerial parts of the mutant rum1 are not affected. The mutant rum1 displays severely reduced auxin transport in the primary root and a delayed gravitropic response. Exogenously applied auxin does not induce lateral roots in the primary root of rum1. Lateral roots are initiated in a specific cell type, the pericycle. Cell-type-specific transcriptome profiling of the primary root pericycle 64 h after germination, thus before lateral root initiation, via a combination of laser capture microdissection and subsequent microarray analyses of 12k maize microarray chips revealed 90 genes preferentially expressed in the wild-type pericycle and 73 genes preferentially expressed in the rum1 pericycle (fold change >2; P-value <0.01; estimated false discovery rate of 13.8%). Among the 51 annotated genes predominately expressed in the wild-type pericycle, 19 genes are involved in signal transduction, transcription, and the cell cycle. This analysis defines an array of genes that is active before lateral root initiation and will contribute to the identification of checkpoints involved in lateral root formation downstream of rum1.

Collaboration


Dive into the Dan Nettleton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger P. Wise

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Long Qu

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge