Michael F. Hynes
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael F. Hynes.
Plasmid | 1985
Michael F. Hynes; Reinhard Simon; Alfred Pühler
Agrobacterium tumefaciens strains LBA275 and LBA290 were cured of their cryptic plasmid pAtC58 by the introduction of the Rhizobium meliloti plasmid pRme41a, which is incompatible with pAtC58. pRme41a and pTiC58, the resident Ti plasmid of LBA275, were subsequently eliminated by growth at supraoptimal temperature (40 degrees C). The resulting plasmid-free Agrobacterium strains, UBAPF1 and UBAPF2, have proved extremely useful for the study of Rhizobium plasmids. The loss of the cryptic plasmid pAtC58 has no effect on the tumor-forming ability of the Agrobacterium strains; when the Ti plasmid is present, normal tumors are formed on Kalanchoe daigremontiana.
Gene | 1989
Michael F. Hynes; J Quandt; Michael O'Connell; Alfred Pühler
We have constructed derivatives of the transposon Tn5 carrying the mob site (oriT) of plasmid RP4, and an nptI-sacB-sacR cassette [Ried and Collmer, Gene 57 (1987) 239-246]. The mob site, in conjunction with the antibiotic-resistance markers carried on the transposons, allows identification of transposon inserts in cryptic plasmids by mobilisation to other strains. The sacB-sacR genes allow direct selection for the loss or curing of plasmids, because only strains which no longer contain an active sacB gene are able to grow on media containing sucrose. We have tested these transposons in four strains of Rhizobium leguminosarum and two strains of Rhizobium meliloti, and have been able to demonstrate curing of several large cryptic plasmids, and generation of large deletions in many other plasmids. This method has enabled us to show that the R. leguminosarum plasmids pRL12JI and pR1eVF39f carry auxotrophic markers, and that the plasmid pR1eVF39c carries genes which affect colony morphology.
Molecular Genetics and Genomics | 1986
Michael F. Hynes; Reinhard Simon; Peter Müller; Karsten Niehaus; Monika Labes; Alfred Pühler
SummaryWe have shown by physical and genetic means that there are two megaplasmids in all strains of Rhizobium meliloti that we have studied. Megaplasmids from several strains of R. meliloti were mobilized to Agrobacterium tumefaciens and to other Rhizobium strains using the Tn5-Mob system. We were also able to resolve these two megaplasmids in agarose gels for most strains, and to show that only one of them hybridized to nif and nod genes. Transfer of this plasmid, the pSym, to Agrobacterium, R. leguminosarum, and R. trifolii strains conferred on these recipients the ability to nodulate alfalfa ineffectively. The second megaplasmid did not appear to have a direct role in nodule initiation. However, we were able to complement extracellular polysaccharide (EPS-) mutants of R. meliloti by transferring this second megaplasmid into them. Furthermore, Tn5-induced EPS- mutants of R. meliloti 2011, which produced ineffective (Fix-) nodules of abnormal morphology, were shown by hybridization and complementation to carry mutations in this second megaplasmid. This demonstrates that both megaplasmids of R. meliloti are necessary for the effective nodulation of alfalfa.
Molecular Genetics and Genomics | 1988
Peter Müller; Michael F. Hynes; Dieter Kapp; Karsten Niehaus; Alfred Pühler
SummarySymbiotic mutants of Rhizobium meliloti were isolated following Tn5 mutagenesis. Besides four nodulation mutants (Nod-) unable to induce nodule formation on alfalfa, five infection mutants (Inf-), which induce the formation of root nodules without detectable infection threads or bacteroids, were obtained. The Inf- mutants were subdivided into two classes. One class contains mutants which fail to synthesize acidic exopolysaccharide (EPS-). The other class is comprised of mutants which produce excess amounts of acidic exopolysaccharide (EPS*). 13C nuclear magnetic resonance spectroscopy of the exopolysaccharide isolated from one of the latter type of Inf- mutant, 101.45, revealed that the side chain of the repeating octosaccharide unit lacks the terminal pyruvate residue. Complementing cosmids were isolated for all Inf- mutants. In the case of the Inf- EPS- mutants the complementing cosmids contain DNA segments which overlap and are part of megaplasmid 2. For two mutants the mutations were found to map on a 7.8 kb EcoRI fragment. In the case of the Inf- EPS* mutants the complementing cosmids carry chromosomal DNA. The mutations of two Inf- EPS* mutants were localized on a 6.4 kb EcoRI fragment. Coinoculation of alfalfa plants with Nod- and Inf- EPS- mutants resulted in effective symbiosis. The nodules appeared wild type and fixed nitrogen. In constrast, coinoculations with Nod- mutants and the Inf- EPS* mutant 101.45 did not result in the formation of effective nodules.
Molecular Microbiology | 2007
Lance D. Miller; Christopher K. Yost; Michael F. Hynes; Gladys Alexandre
Rhizobium leguminosarum biovar viciae strain 3841 is a motile alpha‐proteobacterium that can establish a nitrogen‐fixing symbiosis within the roots of pea plants. In order to determine the contribution of chemotaxis to the lifestyle of R. leguminosarum, we have characterized the function of two chemotaxis gene clusters (che1 and che2) in controlling motility behaviour. We have found that both chemotaxis gene clusters modulate the motility swimming bias of R. leguminosarum cells and that the che1 cluster is the major pathway controlling swimming bias and chemotaxis. The che2 cluster also contributes to swimming bias, but has a minor effect on chemotaxis. Using competitive nodulation assays, we have demonstrated that a functional che1 cluster, but not the che2 cluster, promotes competitive nodulation of the peas. This finding implies that the environmental cue(s) triggering chemotaxis of R. leguminosarum bv. viciae cells towards the roots of pea and facilitating colonization are likely to be processed through the che1 cluster despite the contribution of both che clusters to swimming behaviour. A phylogenetic analysis of the distribution of che1 and che2 orthologues in the alpha‐proteobacteria together with our results allow us to propose that che1 homologues are major controllers of chemotaxis and host association in the Rhizobiaceae.
Journal of Bacteriology | 2000
Ivan J. Oresnik; Shu-Lin Liu; Christopher K. Yost; Michael F. Hynes
We report the curing of the 1,360-kb megaplasmid pRme2011a from Sinorhizobium meliloti strain Rm2011. With a positive selection strategy that utilized Tn5B12-S containing the sacB gene, we were able to cure this replicon by successive rounds of selecting for deletion formation in vivo. Subsequent Southern blot, Eckhardt gel, and pulsed-field gel electrophoresis analyses were consistent with the hypothesis that the resultant strain was indeed missing pRme2011a. The cured derivative grew as well as the wild-type strain in both complex and defined media but was unable to use a number of substrates as a sole source of carbon on defined media.
Molecular Plant-microbe Interactions | 1998
Ivan J. Oresnik; Laurie A. Pacarynuk; Shelley A. P. O'Brien; Christopher K. Yost; Michael F. Hynes
Cosmids carrying genes involved in utilization of rhamnose, sorbitol, and adonitol were isolated from a genomic library of Rhizobium leguminosarum by complementation of plasmid-cured derivatives of strain Rlt100 that were unable to grow on these carbon sources. Transposon mutagenesis was used to identify regions of each cosmid necessary for catabolism of the respective carbon source; partial DNA sequencing, as well as analysis of gene fusions created with transposon Tn5-B20, helped to determine the orientation and possible function of genes required for growth on the three substrates. Representative Tn5 insertions in the cosmids were recombined into the wild-type strain Rlt100 by gene replacement to generate isogenic strains unable to use either rhamnose, sorbitol, or adonitol. These strains were tested for their nodulation competitiveness compared with Rlt100 in co-inoculation experiments on clover plants. While sorbitol and adonitol catabolic mutants were unaltered in their competitive behavior, the nod...
PLOS ONE | 2008
Lisa Crossman; Santiago Castillo-Ramírez; Craig McAnnula; Luis Lozano; Georgios S. Vernikos; José Luis Acosta; Zara F. Ghazoui; Ismael Hernández-González; Georgina E. Meakin; Alan W. Walker; Michael F. Hynes; J. Peter W. Young; J. Allan Downie; David Romero; Andrew W. B. Johnston; Guillermo Dávila; Julian Parkhill; Víctor González
This work centres on the genomic comparisons of two closely-related nitrogen-fixing symbiotic bacteria, Rhizobium leguminosarum biovar viciae 3841 and Rhizobium etli CFN42. These strains maintain a stable genomic core that is also common to other rhizobia species plus a very variable and significant accessory component. The chromosomes are highly syntenic, whereas plasmids are related by fewer syntenic blocks and have mosaic structures. The pairs of plasmids p42f-pRL12, p42e-pRL11 and p42b-pRL9 as well large parts of p42c with pRL10 are shown to be similar, whereas the symbiotic plasmids (p42d and pRL10) are structurally unrelated and seem to follow distinct evolutionary paths. Even though purifying selection is acting on the whole genome, the accessory component is evolving more rapidly. This component is constituted largely for proteins for transport of diverse metabolites and elements of external origin. The present analysis allows us to conclude that a heterogeneous and quickly diversifying group of plasmids co-exists in a common genomic framework.
Microbiology | 1998
Christopher K. Yost; Patrice Rochepeau; Michael F. Hynes
Methyl-accepting chemotaxis proteins (MCPs) play important roles in the chemotactic response of many bacteria. Oligonucleotide primers designed to amplify the conserved signalling domain of MCPs by PCR were used to identify potential MCP-encoding genes in Rhizobium leguminosarum. Using a PCR-derived probe created from these primers a genomic library of R. leguminosarum VF39SM was screened; at least five putative MCP-encoding genes (termed mcpB to mcpF) were identified and isolated from the library. One of these putative genes (mcpC) is located on one of the indigenous plasmids of VF39SM. Fifteen different cosmids showing homology to an mcpD probe were also isolated from a genomic library. The complete DNA sequences of mcpB, mcpC and mcpD were obtained. All three genes code for proteins with characteristics typical of MCPs. However, the protein encoded by mcpB has a relatively large periplasmic domain compared to that in other MCPs. Partial DNA sequences of mcpE and mcpF had strong similarity to sequences from the methylation domains of known MCPs. Mutants defective in mcpB, mcpC, mcpD or mcpE were created using insertional mutagenesis strategies. Mutation of mcpB resulted in impairment of chemotaxis to a wide range of carbon sources on swarm plates; phenotypes for the other three mutants have yet to be elucidated. The mcpB, mcpC and mcpD mutants were tested for loss of nodulation competitiveness. When co-inoculated with the wild-type, the mcpB and mcpC mutants formed fewer nodules than the wild-type, whereas the mcpD mutant was just as competitive as the wild-type. The results overall suggest that R. leguminosarum possesses mcp-like genes, and that at least some of these play a role in early steps in the plant-microbe interaction.
Electrophoresis | 2000
Hancai Chen; Jody Higgins; Ivan J. Oresnik; Michael F. Hynes; Siria H. A. Natera; Michael A. Djordjevic; Jeremy J. Weinman; Barry G. Rolfe
Sinorhizobium meliloti was studied by proteomic analysis to investigate the contribution made by plasmid‐encoded functions on the intracellular regulation of this bacterium. Protein profiles of strain 2011 were compared with those from its mutant strains which were either cured of their pRme2011a (also called pSyma) plasmid (strain 818), or contained an extensive deletion of this plasmid (strain SmA146). Plasmid pSyma contains the nodulation and nitrogen fixation genes and is 1.4 Mbp with an estimated coding potential of 1400 proteins. However, under the growth conditions used we could detect 60 differences between the parent strain and its pSyma‐cured derivative, strain 818. While the majority of these differences were due to regulatory changes, such as up‐ and downregulation, some proteins were totally missing in some strains. These 60 proteins were classified into 21 subgroups, A to U, based on their measured protein levels when the cells were grown in the presence or absence of luteolin. Comparisons were made between the different strains to assess the possible interactions of the different proteins of the subgroups and plasmid pSyma. These results suggest that pSyma has a role in the regulation of the expression of genes from the other replicons (3.5 Mbp chromosome and the 1.7 Mbp pSymB plasmid) present in the S. meliloti cells. Proteome analysis provides a sensitive tool to examine the functional organisation of the S. meliloti genome and the intracellular gene interactions between replicons and will provide a powerful analytical tool to complement the genome sequencing of strain 1021.