Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher L. Brett is active.

Publication


Featured researches published by Christopher L. Brett.


The Journal of Physiology | 2005

NHERF family and NHE3 regulation

Mark Donowitz; Boyoung Cha; Nicholas C. Zachos; Christopher L. Brett; Annu Sharma; C. Ming Tse; Xuhang Li

The intestinal and renal proximal tubule brush border (BB) Na+–H+ exchanger NHE3 binds to members of the NHERF (Na+–H+ exchanger regulatory factor) family. These are four proteins (current most used names include NHERF1, NHERF2, PDZK1 and IKEPP) which are related to each other, are present in locations in or close to the BB, and scaffold a variable series of proteins in NHE3‐containing complexes in a dynamic manner that is altered by changes in signal transduction which affects NHE3 activity. The specific roles of these proteins in terms of NHE3 regulation as well as interactions with each other and with their many other substrates are only now being defined. Specificity for only one member of the NHERF family in one example of NHE3 regulation, inhibition by elevation in cGMP, is used to describe how NHERF family proteins are involved in NHE3 complex formation and its regulation. In this case, NHERF2 directly binds cGKII in the brush border to form an NHE3 complex, with cGKII also associating with the BB via its myristoylation.


Biomacromolecules | 2013

Intracellular Drug Delivery Nanocarriers of Glutathione-Responsive Degradable Block Copolymers Having Pendant Disulfide Linkages

Behnoush Khorsand; Gabriel Lapointe; Christopher L. Brett; Jung Kwon Oh

Self-assembled micelles of amphiphilic block copolymers (ABPs) with stimuli-responsive degradation (SRD) properties have a great promise as nanotherapeutics exhibiting enhanced release of encapsulated therapeutics into targeted cells. Here, thiol-responsive degradable micelles based on a new ABP consisting of a pendant disulfide-labeled methacrylate polymer block (PHMssEt) and a hydrophilic poly(ethylene oxide) (PEO) block were investigated as effective intracellular nanocarriers of anticancer drugs. In response to glutathione (GSH) as a cellular trigger, the cleavage of pendant disulfide linkages in hydrophobic PHMssEt blocks of micellar cores caused the destabilization of self-assembled micelles due to change in hydrophobic/hydrophilic balance. Such GSH-triggered micellar destabilization changed their size distribution with an appearance of large aggregates and led to enhanced release of encapsulated anticancer drugs. Cell culture results from flow cytometry and confocal laser scanning microscopy for cellular uptake as well as cell viability measurements for high anticancer efficacy suggest that new GSH-responsive degradable PEO-b-PHMssEt micelles offer versatility in multifunctional drug delivery applications.


PLOS ONE | 2011

Genome-Wide Analysis Reveals the Vacuolar pH-Stat of Saccharomyces cerevisiae

Christopher L. Brett; Laura Kallay; Zhaolin Hua; Richard Green; Anthony Chyou; Yongqiang Zhang; Todd R. Graham; Mark Donowitz; Rajini Rao

Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pHv) in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pHv (5.27±0.13) was resistant to acid stress (5.28±0.14) but shifted significantly in response to alkali stress (5.83±0.13). Of 107 mutants that displayed aberrant pHv under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pHv dysregulation in a neo1ts mutant restored viability whereas cholesterol accumulation in human NPC1−/− fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation.


American Journal of Human Genetics | 2013

Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability

Nina Bögershausen; Nassim Shahrzad; Jessica X. Chong; Jürgen Christoph Von Kleist-Retzow; Daniela Stanga; Yun Li; Francois P. Bernier; Catrina M. Loucks; Radu Wirth; Eric Puffenberger; Robert A. Hegele; Julia Schreml; Gabriel Lapointe; Katharina Keupp; Christopher L. Brett; Rebecca Anderson; Andreas Hahn; A. Micheil Innes; Oksana Suchowersky; Marilyn B. Mets; Gudrun Nürnberg; D. Ross McLeod; Holger Thiele; Darrel Waggoner; Janine Altmüller; Kym M. Boycott; Benedikt Schoser; Peter Nürnberg; Carole Ober; Raoul Heller

Myopathies are a clinically and etiologically heterogeneous group of disorders that can range from limb girdle muscular dystrophy (LGMD) to syndromic forms with associated features including intellectual disability. Here, we report the identification of mutations in transport protein particle complex 11 (TRAPPC11) in three individuals of a consanguineous Syrian family presenting with LGMD and in five individuals of Hutterite descent presenting with myopathy, infantile hyperkinetic movements, ataxia, and intellectual disability. By using a combination of whole-exome or genome sequencing with homozygosity mapping, we identified the homozygous c.2938G>A (p.Gly980Arg) missense mutation within the gryzun domain of TRAPPC11 in the Syrian LGMD family and the homozygous c.1287+5G>A splice-site mutation resulting in a 58 amino acid in-frame deletion (p.Ala372_Ser429del) in the foie gras domain of TRAPPC11 in the Hutterite families. TRAPPC11 encodes a component of the multiprotein TRAPP complex involved in membrane trafficking. We demonstrate that both mutations impair the binding ability of TRAPPC11 to other TRAPP complex components and disrupt the Golgi apparatus architecture. Marker trafficking experiments for the p.Ala372_Ser429del deletion indicated normal ER-to-Golgi trafficking but dramatically delayed exit from the Golgi to the cell surface. Moreover, we observed alterations of the lysosomal membrane glycoproteins lysosome-associated membrane protein 1 (LAMP1) and LAMP2 as a consequence of TRAPPC11 dysfunction supporting a defect in the transport of secretory proteins as the underlying pathomechanism.


The Journal of Neuroscience | 2006

Vestibular Hair Bundles Control pH with (Na+, K+)/H+ Exchangers NHE6 and NHE9

Jennifer K. Hill; Christopher L. Brett; Anthony Chyou; Laura Kallay; Masao Sakaguchi; Rajini Rao; Peter G. Gillespie

In hair cells of the inner ear, robust Ca2+/H+ exchange mediated by plasma-membrane Ca2+-ATPase would rapidly acidify mechanically sensitive hair bundles without efficient removal of H+. We found that, whereas the basolateral membrane of vestibular hair cells from the frog saccule extrudes H+ via an Na+-dependent mechanism, bundles rapidly remove H+ in the absence of Na+ and HCO3−, even when the soma is acidified. K+ was fully effective and sufficient for H+ removal; in contrast, Rb+ failed to support pH recovery. Na+/H+-exchanger isoform 1 (NHE1) was present on hair-cell soma membranes and was likely responsible for Na+-dependent H+ extrusion. NHE6 and NHE9 are organellar isoforms that can appear transiently on plasma membranes and have been proposed to mediate K+/H+ exchange. We identified NHE6 in a subset of hair bundles; NHE9 was present in all bundles. Heterologous expression of these isoforms in yeast strains lacking endogenous exchangers conferred pH-dependent tolerance to high levels of KCl and NaCl. NHE9 preferred cations in the order K+, Na+ ≫ Rb+, consistent with the relative efficacies of these ions in promoting pH recovery in hair bundles. Electroneutral K+/H+ exchange, which we propose is performed by NHE9 in hair bundles, exploits the high-K+ endolymph, responds only to pH imbalance across the bundle membrane, is unaffected by the +80 mV endocochlear potential, and uses mechanisms already present in the ear for K+ recycling. This mechanism allows the hair cell to remove H+ generated by Ca2+ pumping without ATP hydrolysis in the cell.


Biochemical Journal | 2006

Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homoeostasis and vesicle trafficking

Sanchita Mukherjee; Laura Kallay; Christopher L. Brett; Rajini Rao

Yeast Nhx1 [Na+(K+)/H+ exchanger 1] is an intracellular Na+(K+)/H+ exchanger, localizing to the late endosome where it is important for ion homoeostasis and vesicle trafficking. Phylogenetic analysis of NHE (Na+/H+ exchanger) sequences has identified orthologous proteins, including HsNHE6 (human NHE6), HsNHE7 and HsNHE9 of unknown physiological role. These appear distinct from well-studied mammalian plasma membrane isoforms (NHE1-NHE5). To explore the differences between plasma membrane and intracellular NHEs and understand the link between ion homoeostasis and vesicle trafficking, we examined the consequence of replacing residues in the intramembranous H10 loop of Nhx1 between transmembrane segments 9 and 10. The critical role for the carboxy group of Glu355 in ion transport is consistent with the invariance of this residue in all NHEs. Surprisingly, residues specifically conserved in the intracellular isoforms (such as Phe357 and Tyr361) could not be replaced with closely similar residues (leucine and phenylalanine) found in the plasma membrane isoforms without loss of function, revealing unexpected side chain specificity. The trafficking phenotypes of all Nhx1 mutants, including hygromycin-sensitivity and missorting of carboxypeptidase Y, were found to directly correlate with pH homoeostasis defects and could be proportionately corrected by titration with weak base. The present study demonstrates the importance of the H10 loop of the NHE family, highlights the differences between plasma membrane and intracellular isoforms and shows that trafficking defects are tightly coupled with pH homoeostasis.


FEBS Letters | 2006

Does the proteome encode organellar pH

Christopher L. Brett; Mark Donowitz; Rajini Rao

Inherent to the proteome itself, may be information that enables proteins to buffer pH at a level that promotes their own function within a specialized compartment. We observe that the distribution of computed isoelectric points in the yeast proteome matches experimentally derived organellar pH estimates across distinct subcellular compartments. This raises an interesting evolutionary question: did the pI of proteins and the pH of organelles co‐evolve to optimize function?


Journal of Biological Chemistry | 2011

Endosomal Na+ (K+)/H+ exchanger Nhx1/Vps44 functions independently and downstream of multivesicular body formation.

Laura Kallay; Christopher L. Brett; Deepali N. Tukaye; Megan Wemmer; Anthony Chyou; Greg Odorizzi; Rajini Rao

Background: Nhx1/Vps44 is proposed to be a Class E gene involved in formation of the multivesicular body (MVB). However, this hypothesis has not been tested. Results: Nhx1 is not required for cargo sorting or MVB formation and shows synthetic phenotypes with select ESCRT mutants. Conclusion: Nhx1 functions independently of the ESCRT pathway. Significance: Nhx1 may have a post-ESCRT role in endosomal membrane fusion. The multivesicular body (MVB) is an endosomal intermediate containing intralumenal vesicles destined for membrane protein degradation in the lysosome. In Saccharomyces cerevisiae, the MVB pathway is composed of 17 evolutionarily conserved ESCRT (endosomal sorting complex required for transport) genes grouped by their vacuole protein sorting Class E mutant phenotypes. Only one integral membrane protein, the endosomal Na+ (K+)/H+ exchanger Nhx1/Vps44, has been assigned to this class, but its role in the MVB pathway has not been directly tested. Herein, we first evaluated the link between Nhx1 and the ESCRT proteins and then used an unbiased phenomics approach to probe the cellular role of Nhx1. Select ESCRT mutants (vps36Δ, vps20Δ, snf7Δ, and bro1Δ) with defects in cargo packaging and intralumenal vesicle formation shared multiple growth phenotypes with nhx1Δ. However, analysis of cellular trafficking and ultrastructural examination by electron microscopy revealed that nhx1Δ cells retain the ability to sort cargo into intralumenal vesicles. In addition, we excluded a role for Nhx1 in Snf7/Bro1-mediated cargo deubiquitylation and Rim101 response to pH stress. Genetic epistasis experiments provided evidence that NHX1 and ESCRT genes function in parallel. A genome-wide screen for single gene deletion mutants that phenocopy nhx1Δ yielded a limited gene set enriched for endosome fusion function, including Rab signaling and actin cytoskeleton reorganization. In light of these findings and the absence of the so-called Class E compartment in nhx1Δ, we eliminated a requirement for Nhx1 in MVB formation and suggest an alternative post-ESCRT role in endosomal membrane fusion.


Traffic | 2018

Distinct features of multivesicular body-lysosome fusion revealed by a new cell-free content-mixing assay

Mahmoud Abdul Karim; Dieter Ronny Samyn; Sevan Mattie; Christopher L. Brett

When marked for degradation, surface receptor and transporter proteins are internalized and delivered to endosomes where they are packaged into intralumenal vesicles (ILVs). Many rounds of ILV formation create multivesicular bodies (MVBs) that fuse with lysosomes exposing ILVs to hydrolases for catabolism. Despite being critical for protein degradation, the molecular underpinnings of MVB‐lysosome fusion remain unclear, although machinery underlying other lysosome fusion events is implicated. But how then is specificity conferred? And how is MVB maturation and fusion coordinated for efficient protein degradation? To address these questions, we developed a cell‐free MVB‐lysosome fusion assay using Saccharomyces cerevisiae as a model. After confirming that the Rab7 ortholog Ypt7 and the multisubunit tethering complex HOPS (homotypic fusion and vacuole protein sorting complex) are required, we found that the Qa‐SNARE Pep12 distinguishes this event from homotypic lysosome fusion. Mutations that impair MVB maturation block fusion by preventing Ypt7 activation, confirming that a Rab‐cascade mechanism harmonizes MVB maturation with lysosome fusion.


Molecular Biology of the Cell | 2017

The Na+(K+)/H+ exchanger Nhx1 controls multivesicular body-vacuolar lysosome fusion

Mahmoud Abdul Karim; Christopher L. Brett

Endosomal Na+(K+)/H+ exchangers (NHEs) are important for endocytosis but it is unclear how they contribute. A cell-free assay was used to show that the yeast NHE Nhx1 regulates multivesicular body–lysosome fusion, the last step of endocytosis, demonstrating how mutations in human orthologues of Nhx1 may cause neurological disease.

Collaboration


Dive into the Christopher L. Brett's collaboration.

Top Co-Authors

Avatar

Rajini Rao

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mark Donowitz

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Kallay

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanchita Mukherjee

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Chyou

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge