Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher L. Colbert is active.

Publication


Featured researches published by Christopher L. Colbert.


Autophagy | 2008

Molecular basis of the regulation of Beclin 1-dependent autophagy by the γ-herpesvirus 68 Bcl-2 homolog M11

Sangita C. Sinha; Christopher L. Colbert; Nils Becker; Yongjie Wei; Beth Levine

γ-Herpesviruses (γHVs), including important human pathogens such as Epstein Barr virus, Kaposi’s sarcoma-associated HV, and the murine γHV68, encode homologs of the anti-apoptotic, cellular Bcl-2 (cBcl-2) to promote viral replication and pathogenesis. The precise molecular details by which these proteins function in viral infection are poorly understood. Autophagy, a lysosomal degradation pathway, is inhibited by the interaction of cBcl-2s with a key autophagy effector, Beclin 1, and can also be inhibited by γHV Bcl 2s. Here we investigate the γHV68 M11-Beclin 1 interaction in atomic detail, using biochemical and structural approaches. We show that the Beclin 1 BH3 domain is the primary determinant of binding to M11 and other Bcl 2s, and this domain binds in a hydrophobic groove on M11, reminiscent of the binding of different BH3 domains to other Bcl-2s. Unexpectedly, regions outside of, but contiguous with, the Beclin 1 BH3 domain also contribute to this interaction. We find that M11 binds to Beclin 1 more strongly than do KSHV Bcl-2 or cBcl-2. Further, the differential affinity of M11 for different BH3 domains is caused by subtle, yet significant, variations in the atomic details of each interaction. Consistent with our structural analysis, we find that Beclin 1 residues L116 and F123, and M11 residue pairs G86+R87 and Y60+L74, are required for M11 to bind to Beclin 1 and down-regulate autophagy. Thus, our results suggest that M11 inhibits autophagy through a mechanism that involves the binding of the Beclin 1 BH3 domain in the M11 hydrophobic surface groove.


Biopolymers | 2000

Evidence for a strong sulfur–aromatic interaction derived from crystallographic data

Randy J. Zauhar; Christopher L. Colbert; R. S. Morgan; William J. Welsh

We have uncovered new evidence for a significant interaction between divalent sulfur atoms and aromatic rings. Our study involves a statistical analysis of interatomic distances and other geometric descriptors derived from entries in the Cambridge Crystallographic Database (F. H. Allen and O. Kennard, Chem. Design Auto. News, 1993, Vol. 8, pp. 1 and 31-37). A set of descriptors was defined sufficient in number and type so as to elucidate completely the preferred geometry of interaction between six-membered aromatic carbon rings and divalent sulfurs for all crystal structures of nonmetal-bearing organic compounds present in the database. In order to test statistical significance, analogous probability distributions for the interaction of the moiety X-CH(2)-X with aromatic rings were computed, and taken a priori to correspond to the null hypothesis of no significant interaction. Tests of significance were carried our pairwise between probability distributions of sulfur-aromatic interaction descriptors and their CH(2)-aromatic analogues using the Smirnov-Kolmogorov nonparametric test (W. W. Daniel, Applied Nonparametric Statistics, Houghton-Mifflin: Boston, New York, 1978, pp. 276-286), and in all cases significance at the 99% confidence level or better was observed. Local maxima of the probability distributions were used to define a preferred geometry of interaction between the divalent sulfur moiety and the aromatic ring. Molecular mechanics studies were performed in an effort to better understand the physical basis of the interaction. This study confirms observations based on statistics of interaction of amino acids in protein crystal structures (R. S. Morgan, C. E. Tatsch, R. H. Gushard, J. M. McAdon, and P. K. Warme, International Journal of Peptide Protein Research, 1978, Vol. 11, pp. 209-217; R. S. Morgan and J. M. McAdon, International Journal of Peptide Protein Research, 1980, Vol. 15, pp. 177-180; K. S. C. Reid, P. F. Lindley, and J. M. Thornton, FEBS Letters, 1985, Vol. 190, pp. 209-213), as well as studies involving molecular mechanics (G. Nemethy and H. A. Scheraga, Biochemistry and Biophysics Research Communications, 1981, Vol. 98, pp. 482-487) and quantum chemical calculations (B. V. Cheney, M. W. Schulz, and J. Cheney, Biochimica Biophysica Acta, 1989, Vol. 996, pp.116-124; J. Pranata, Bioorganic Chemistry, 1997, Vol. 25, pp. 213-219)-all of which point to the possible importance of the sulfur-aromatic interaction. However, the preferred geometry of the interaction, as determined from our analysis of the small-molecule crystal data, differs significantly from that found by other approaches.


Structure | 2000

A Cluster Exposed: Structure of the Rieske Ferredoxin from Biphenyl Dioxygenase and the Redox Properties of Rieske Fe-S Proteins

Christopher L. Colbert; Manon M.-J. Couture; Lindsay D. Eltis; Jeffrey T. Bolin

BACKGROUND Ring-hydroxylating dioxygenases are multicomponent systems that initiate biodegradation of aromatic compounds. Many dioxygenase systems include Rieske-type ferredoxins with amino acid sequences and redox properties remarkably different from the Rieske proteins of proton-translocating respiratory and photosynthetic complexes. In the latter, the [Fe2S2] clusters lie near the protein surface, operate at potentials above +300 mV at pH 7, and express pH- and ionic strength-dependent redox behavior. The reduction potentials of the dioxygenase ferredoxins are approximately 150 mV and are pH-independent. These distinctions were predicted to arise from differences in the exposure of the cluster and/or interactions of the histidine ligands. RESULTS The crystal structure of BphF, the Rieske-type ferredoxin associated with biphenyl dioxygenase, was determined by multiwavelength anomalous diffraction and refined at 1.6 A resolution. The structure of BphF was compared with other Rieske proteins at several levels. BphF has the same two-domain fold as other Rieske proteins, but it lacks all insertions that give the others unique structural features. The BphF Fe-S cluster and its histidine ligands are exposed. However, the cluster has a significantly different environment in that five fewer polar groups interact strongly with the cluster sulfide or the cysteinyl ligands. CONCLUSIONS BphF has structural features consistent with a minimal and perhaps archetypical Rieske protein. Variations in redox potentials among Rieske clusters appear to be largely the result of local electrostatic interactions with protein partial charges. Moreover, it appears that the redox-linked ionizations of the Rieske proteins from proton-translocating complexes are also promoted by these electrostatic interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity

Yihua Huang; Richard H. G. Baxter; Barbara S. Smith; Carrie L. Partch; Christopher L. Colbert; Johann Deisenhofer

Cryptochromes use near-UV/blue light to regulate a variety of growth and adaptive process. Recent biochemical studies demonstrate that the Cryptochrome-Drosophila, Arabidopsis, Synechocystis, Human (Cry-DASH) subfamily of cryptochromes have photolyase activity exclusively for single-stranded cyclobutane pyrimidine dimer (CPD)-containing DNA substrate [Selby C, Sancar A (2006) Proc Natl Acad Sci USA 103:17696–17700]. The crystal structure of cryptochrome 3 from Arabidopsis thaliana (At-Cry3), a member of the Cry-DASH proteins, at 2.1 Å resolution, reveals that both the light-harvesting cofactor 5,10-methenyl-tetrahydrofolyl-polyglutamate (MTHF) and the catalytic cofactor flavin adenine dinucleotide (FAD) are noncovalently bound to the protein. The residues responsible for binding of MTHF in At-Cry3 are not conserved in Escherichia coli photolyase but are strongly conserved in the Cry-DASH subfamily of cryptochromes. The distance and orientation between MTHF and flavin adenine dinucleotide in At-Cry3 is similar to that of E. coli photolyase, in conjunction with the presence of electron transfer chain, suggesting the conservation of redox activity in At-Cry3. Two amino acid substitutions and the penetration of three charged side chains into the CPD-binding cavity in At-Cry3 alter the hydrophobic environment that is accommodating the hydrophobic sugar ring and thymine base moieties in class I CPD photolyases. These changes most likely make CPD binding less energetically favorable and, hence, insufficient to compete with pairing and stacking interactions between the CPD and the duplex DNA substrate. Thus, Cry-DASH subfamily proteins may be unable to stabilize CPD flipped out from the duplex DNA substrate but may be able to preserve the DNA repair activity toward single-stranded CPD-containing DNA substrate.


Proteins | 2014

Intrinsically disordered regions in autophagy proteins.

Yang Mei; Minfei Su; Gaurav Soni; Saeed Salem; Christopher L. Colbert; Sangita C. Sinha

Autophagy is an essential eukaryotic pathway required for cellular homeostasis. Numerous key autophagy effectors and regulators have been identified, but the mechanism by which they carry out their function in autophagy is not fully understood. Our rigorous bioinformatic analysis shows that the majority of key human autophagy proteins include intrinsically disordered regions (IDRs), which are sequences lacking stable secondary and tertiary structure; suggesting that IDRs play an important, yet hitherto uninvestigated, role in autophagy. Available crystal structures corroborate the absence of structure in some of these predicted IDRs. Regions of orthologs equivalent to the IDRs predicted in the human autophagy proteins are poorly conserved, indicating that these regions may have diverse functions in different homologs. We also show that IDRs predicted in human proteins contain several regions predicted to facilitate protein–protein interactions, and delineate the network of proteins that interact with each predicted IDR‐containing autophagy protein, suggesting that many of these interactions may involve IDRs. Lastly, we experimentally show that a BCL2 homology 3 domain (BH3D), within the key autophagy effector BECN1 is an IDR. This BH3D undergoes a dramatic conformational change from coil to α‐helix upon binding to BCL2s, with the C‐terminal half of this BH3D constituting a binding motif, which serves to anchor the interaction of the BH3D to BCL2s. The information presented here will help inform future in‐depth investigations of the biological role and mechanism of IDRs in autophagy proteins. Proteins 2014; 82:565–578.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Crystal structure of Spot 14, a modulator of fatty acid synthesis

Christopher L. Colbert; Chai Wan Kim; Young Ah Moon; Lisa Henry; Maya Palnitkar; William B. McKean; Kevin Fitzgerald; Johann Deisenhofer; Jay D. Horton; Hyock Joo Kwon

Spot 14 (S14) is a protein that is abundantly expressed in lipogenic tissues and is regulated in a manner similar to other enzymes involved in fatty acid synthesis. Deletion of S14 in mice decreased lipid synthesis in lactating mammary tissue, but the mechanism of S14’s action is unknown. Here we present the crystal structure of S14 to 2.65 Å and biochemical data showing that S14 can form heterodimers with MIG12. MIG12 modulates fatty acid synthesis by inducing the polymerization and activity of acetyl-CoA carboxylase, the first committed enzymatic reaction in the fatty acid synthesis pathway. Coexpression of S14 and MIG12 leads to heterodimers and reduced acetyl-CoA carboxylase polymerization and activity. The structure of S14 suggests a mechanism whereby heterodimer formation with MIG12 attenuates the ability of MIG12 to activate ACC.


Journal of Biological Chemistry | 2014

Targeting γ-herpesvirus 68 Bcl-2 mediated down-regulation of autophagy

Minfei Su; Yang Mei; Ruslan Sanishvili; Beth Levine; Christopher L. Colbert; Sangita C. Sinha

Background: Cellular and γ-herpesvirus Bcl-2 homologs down-regulate autophagy. Results: A peptide designed to bind to the γ-herpesvirus68 Bcl-2, M11, but not cellular Bcl-2 homologs, abrogates M11-mediated down-regulation of autophagy. Conclusion: This peptide is a selective M11 inhibitor. Significance: Such selective inhibitors are important for understanding the role of γ-herpesvirus Bcl-2 homologs in viral reactivation and oncogenic transformation of host cells. γ-herpesviruses (γHVs) are common human pathogens that encode homologs of the anti-apoptotic cellular Bcl-2 proteins, which are critical to viral reactivation and oncogenic transformation. The murine γHV68 provides a tractable in vivo model for understanding general features of these important human pathogens. Bcl-XL, a cellular Bcl-2 homolog, and the murine γHV68 Bcl-2 homolog, M11, both bind to a BH3 domain within the key autophagy effector Beclin 1 with comparable affinities, resulting in the down-regulation of Beclin 1-mediated autophagy. Despite this similarity, differences in residues lining the binding site of M11 and Bcl-XL dictate varying affinities for the different BH3 domain-containing proteins. Here we delineate Beclin 1 differential specificity determinants for binding to M11 or Bcl-XL by quantifying autophagy levels in cells expressing different Beclin 1 mutants and either M11 or Bcl-XL, and we show that a G120E/D121A Beclin 1 mutant selectively prevents down-regulation of Beclin 1-mediated autophagy by Bcl-XL, but not by M11. We use isothermal titration calorimetry to identify a Beclin 1 BH3 domain-derived peptide that selectively binds to M11, but not to Bcl-XL. The x-ray crystal structure of this peptide bound to M11 reveals the mechanism by which the M11 BH3 domain-binding groove accommodates this M11-specific peptide. This information was used to develop a cell-permeable peptide inhibitor that selectively inhibits M11-mediated, but not Bcl-XL-mediated, down-regulation of autophagy.


Biochemistry | 2014

Stoichiometry of the Calcineurin Regulatory Domain–Calmodulin Complex

Tori B. Dunlap; Hou-Fu Guo; Erik C. Cook; Emily Holbrook; Julie Rumi-Masante; Terrence E. Lester; Christopher L. Colbert; Craig W. Vander Kooi; Trevor P. Creamer

Calcineurin is an essential serine/threonine phosphatase that plays vital roles in neuronal development and function, heart growth, and immune system activation. Calcineurin is unique in that it is the only phosphatase known to be activated by calmodulin in response to increasing intracellular calcium concentrations. Calcium-loaded calmodulin binds to the regulatory domain of calcineurin, resulting in a conformational change that removes an autoinhibitory domain from the active site of the phosphatase. We have determined a 1.95 Å crystal structure of calmodulin bound to a peptide corresponding to its binding region from calcineurin. In contrast to previous structures of this complex, our structure has a stoichiometry of 1:1 and has the canonical collapsed, wraparound conformation observed for many calmodulin-substrate complexes. In addition, we have used size-exclusion chromatography and time-resolved fluorescence to probe the stoichiometry of binding of calmodulin to a construct corresponding to almost the entire regulatory domain from calcineurin, again finding a 1:1 complex. Taken in sum, our data strongly suggest that a single calmodulin protein is necessary and sufficient to bind to and activate each calcineurin enzyme.


PLOS ONE | 2013

Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase reveals features of potent polychlorinated biphenyl-degrading enzymes.

Christopher L. Colbert; Nathalie Y. R. Agar; Pravindra Kumar; Mathew N. Chakko; Sangita C. Sinha; Justin Powlowski; Lindsay D. Eltis; Jeffrey T. Bolin

The oxidative degradation of biphenyl and polychlorinated biphenyls (PCBs) is initiated in Pandoraea pnomenusa B-356 by biphenyl dioxygenase (BPDOB356). BPDOB356, a heterohexameric (αβ)3 Rieske oxygenase (RO), catalyzes the insertion of dioxygen with stereo- and regioselectivity at the 2,3-carbons of biphenyl, and can transform a broad spectrum of PCB congeners. Here we present the X-ray crystal structures of BPDOB356 with and without its substrate biphenyl 1.6-Å resolution for both structures. In both cases, the Fe(II) has five ligands in a square pyramidal configuration: H233 Nε2, H239 Nε2, D386 Oδ1 and Oδ2, and a single water molecule. Analysis of the active sites of BPDOB356 and related ROs revealed structural features that likely contribute to the superior PCB-degrading ability of certain BPDOs. First, the active site cavity readily accommodates biphenyl with minimal conformational rearrangement. Second, M231 was predicted to sterically interfere with binding of some PCBs, and substitution of this residue yielded variants that transform 2,2′-dichlorobiphenyl more effectively. Third, in addition to the volume and shape of the active site, residues at the active site entrance also apparently influence substrate preference. Finally, comparison of the conformation of the active site entrance loop among ROs provides a basis for a structure-based classification consistent with a phylogeny derived from amino acid sequence alignments.


Biochemistry | 2016

Conformational Flexibility Enables the Function of a BECN1 Region Essential for Starvation-Mediated Autophagy

Yang Mei; Arvind Ramanathan; Karen Glover; Christopher B. Stanley; Ruslan Sanishvili; Srinivas Chakravarthy; Zhongyu Yang; Christopher L. Colbert; Sangita C. Sinha

BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 Å sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron-electron resonance-electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1 domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Lastly, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder-to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.

Collaboration


Dive into the Christopher L. Colbert's collaboration.

Top Co-Authors

Avatar

Sangita C. Sinha

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Minfei Su

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Yang Mei

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Srinivas Chakravarthy

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jaime L. Jensen

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Karen Glover

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Beth Levine

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yue Li

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Lindsay D. Eltis

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge