Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher L. Karp is active.

Publication


Featured researches published by Christopher L. Karp.


Nature Immunology | 2009

Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis

Masako Murai; Olga Turovskaya; Gisen Kim; Rajat Madan; Christopher L. Karp; Hilde Cheroutre; Mitchell Kronenberg

Regulatory T cells (Treg cells) that express the transcription factor Foxp3 suppress the activity of other cells. Here we show that interleukin 10 (IL-10) produced by CD11b+ myeloid cells in recombination-activating gene 1–deficient (Rag1−/−) recipient mice was needed to prevent the colitis induced by transferred CD4+CD45RBhi T cells. In Il10−/−Rag1−/− mice, Treg cells failed to maintain Foxp3 expression and regulatory activity. The loss of Foxp3 expression occurred only in recipients with colitis, which indicates that the requirement for IL-10 is manifested in the presence of inflammation. IL-10 receptor–deficient (Il10rb−/−) Treg cells also failed to maintain Foxp3 expression, which suggested that host IL-10 acted directly on the Treg cells. Our data indicate that IL-10 released from myeloid cells acts in a paracrine manner on Treg cells to maintain Foxp3 expression.


Nature | 2009

Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein

Aurelien Trompette; Senad Divanovic; Alberto Visintin; Carine Blanchard; Rashmi S. Hegde; Rajat Madan; Peter S. Thorne; Marsha Wills-Karp; Theresa L. Gioannini; Jerry P. Weiss; Christopher L. Karp

Aeroallergy results from maladaptive immune responses to ubiquitous, otherwise innocuous environmental proteins. Although the proteins targeted by aeroallergic responses represent a tiny fraction of the airborne proteins humans are exposed to, allergenicity is a quite public phenomenon—the same proteins typically behave as aeroallergens across the human population. Why particular proteins tend to act as allergens in susceptible hosts is a fundamental mechanistic question that remains largely unanswered. The main house-dust-mite allergen, Der p 2, has structural homology with MD-2 (also known as LY96), the lipopolysaccharide (LPS)-binding component of the Toll-like receptor (TLR) 4 signalling complex. Here we show that Der p 2 also has functional homology, facilitating signalling through direct interactions with the TLR4 complex, and reconstituting LPS-driven TLR4 signalling in the absence of MD-2. Mirroring this, airway sensitization and challenge with Der p 2 led to experimental allergic asthma in wild type and MD-2-deficient, but not TLR4-deficient, mice. Our results indicate that Der p 2 tends to be targeted by adaptive immune responses because of its auto-adjuvant properties. The fact that other members of the MD-2-like lipid-binding family are allergens, and that most defined major allergens are thought to be lipid-binding proteins, suggests that intrinsic adjuvant activity by such proteins and their accompanying lipid cargo may have some generality as a mechanism underlying the phenomenon of allergenicity.


Science | 1996

Mechanism of suppression of cell-mediated immunity by measles virus

Christopher L. Karp; Maria Wysocka; Larry M. Wahl; Joseph M. Ahearn; Peter J. Cuomo; Barbara Sherry; Giorgio Trinchieri; Diane E. Griffin

The mechanisms underlying the profound suppression of cell-mediated immunity (CMI) accompanying measles are unclear. Interleukin-12 (IL-12), derived principally from monocytes and macrophages, is critical for the generation of CMI. Measles virus (MV) infection of primary human monocytes specifically down-regulated IL-12 production. Cross-linking of CD46, a complement regulatory protein that is the cellular receptor for MV, with antibody or with the complement activation product C3b similarly inhibited monocyte IL-12 production, providing a plausible mechanism for MV-induced immunosuppression. CD46 provides a regulatory link between the complement system and cellular immune responses.


Science | 2013

Blockade of chronic type I interferon signaling to control persistent LCMV infection.

Elizabeth B. Wilson; Douglas H. Yamada; Heidi Elsaesser; Jonathan Herskovitz; Jane Deng; Genhong Cheng; Bruce J. Aronow; Christopher L. Karp; David G. Brooks

INTERFER(ON)ing Persistence During persistent viral infections, a dysregulated immune response fails to control the infection. Wilson et al. (p. 202) and Teijaro et al. (p. 207; see the Perspective by Odorizzi and Wherry) show this occurs because type I interferons (IFN I), critical for early responses to viral infection, contribute to the altered immunity seen during persistent infection. Antibody blockade of IFN I signaling during chronic lymphocytic choriomeningitis virus (LCMV) in mice resulted in reduced viral titers at later stages of infection, reduced expression of inhibitory immune molecules and prevented the disruptions to secondary lymphoid organs typically observed during persistent infection with LCMV. Whether type I IFNs are also detrimental to persistent viral infection humans, such as HIV and hepatitis C virus, remains to be determined. Blockade of type I interferons leads to better control of persistent lymphocytic choriomeningitis virus infection. [Also see Perspective by Odorizzi and Wherry] Type I interferons (IFN-I) are critical for antiviral immunity; however, chronic IFN-I signaling is associated with hyperimmune activation and disease progression in persistent infections. We demonstrated in mice that blockade of IFN-I signaling diminished chronic immune activation and immune suppression, restored lymphoid tissue architecture, and increased immune parameters associated with control of virus replication, ultimately facilitating clearance of the persistent infection. The accelerated control of persistent infection induced by blocking IFN-I signaling required CD4 T cells and was associated with enhanced IFN-γ production. Thus, we demonstrated that interfering with chronic IFN-I signaling during persistent infection redirects the immune environment to enable control of infection.


Nature Immunology | 2000

Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma

Christopher L. Karp; Andrew Grupe; Eric E. Schadt; Susan Ewart; Michelle Keane-Moore; Peter Cuomo; Jörg Köhl; Larry M. Wahl; Douglas Kuperman; Soren Germer; Dee Aud; Gary Peltz; Marsha Wills-Karp

The prevalence and severity of allergic asthma continue to rise, lending urgency to the search for environmental triggers and genetic substrates. Using microarray analysis of pulmonary gene expression and single nucleotide polymorphism–based genotyping, combined with quantitative trait locus analysis, we identified the gene encoding complement factor 5 (C5) as a susceptibility locus for allergen-induced airway hyperresponsiveness in a murine model of asthma. A deletion in the coding sequence of C5 leads to C5-deficiency and susceptibility. Interleukin 12 (IL-12) is able to prevent or reverse experimental allergic asthma. Blockade of the C5a receptor rendered human monocytes unable to produce IL-12, mimicking blunted IL-12 production by macrophages from C5-deficient mice and providing a mechanism for the regulation of susceptibility to asthma by C5. The role of complement in modulating susceptibility to asthma highlights the importance of immunoregulatory events at the interface of innate and adaptive immunity in disease pathogenesis.


Nature Medicine | 2009

Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10

Jie Sun; Rajat Madan; Christopher L. Karp; Thomas J. Braciale

Activated antigen-specific T cells produce a variety of effector molecules for clearing infection but also contribute to inflammation and tissue injury. Here we report an anti-inflammatory property of antiviral CD8+ and CD4+ effector T cells (Teff cells) in the infected periphery during acute virus infection. We find that, during acute influenza infection, interleukin-10 (IL-10) is produced in the infected lungs in large amounts—exclusively by infiltrating virus-specific Teff cells, with CD8+ Teff cells contributing a larger fraction of the IL-10 produced. These Teff cells in the periphery simultaneously produce IL-10 and proinflammatory cytokines and express lineage markers characteristic of conventional T helper type 1 or T cytotoxic type 1 cells. Notably, blocking the action of the Teff cell–derived IL-10 results in enhanced pulmonary inflammation and lethal injury. Our results show that antiviral Teff cells exert regulatory functions—that is, they fine-tune the extent of lung inflammation and injury associated with influenza infection by producing an anti-inflammatory cytokine. We discuss the potential implications of these findings for infection with highly pathogenic influenza viruses.


Journal of Immunology | 2009

Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells.

Caroline Pot; Hulin Jin; Amit Awasthi; Sue Min Liu; Chen-Yen Lai; Rajat Madan; Arlene H. Sharpe; Christopher L. Karp; Shi-Chuen Miaw; I-Cheng Ho; Vijay K. Kuchroo

IL-27 has recently been identified as a differentiation factor for the generation of IL-10-producing regulatory type 1 (Tr1) T cells. However, how IL-27 induces the expansion of Tr1 cells has not been elucidated. In this study we demonstrate that IL-27 drives the expansion and differentiation of IL-10-producing murine Tr1 cells by inducing three key elements: the transcription factor c-Maf, the cytokine IL-21, and the costimulatory receptor ICOS. IL-27-driven c-Maf expression transactivates IL-21 production, which acts as an autocrine growth factor for the expansion and/or maintenance of IL-27-induced Tr1 cells. ICOS further promotes IL-27-driven Tr1 cells. Each of those elements is essential, because loss of c-Maf, IL-21-signaling, or ICOS decreases the frequency of IL-27-induced differentiation of IL-10-producing Tr1 cells.


Nature Immunology | 2005

Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105.

Senad Divanovic; Aurelien Trompette; Sowsan F. Atabani; Rajat Madan; Douglas T. Golenbock; Alberto Visintin; Robert W. Finberg; Alexander Tarakhovsky; Stefanie N. Vogel; Yasmine Belkaid; Evelyn A. Kurt-Jones; Christopher L. Karp

Activation of Toll-like receptor (TLR) signaling by microbial signatures is critical to the induction of immune responses. Such responses demand tight regulation. RP105 is a TLR homolog thought to be mostly B cell specific, lacking a signaling domain. We report here that RP105 expression was wide, directly mirroring that of TLR4 on antigen-presenting cells. Moreover, RP105 was a specific inhibitor of TLR4 signaling in HEK 293 cells, a function conferred by its extracellular domain. Notably, RP105 and its helper molecule, MD-1, interacted directly with the TLR4 signaling complex, inhibiting its ability to bind microbial ligand. Finally, RP105 regulated TLR4 signaling in dendritic cells as well as endotoxin responses in vivo. Thus, our results identify RP105 as a physiological negative regulator of TLR4 responses.


Nature Immunology | 2004

Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway.

Christopher L. Karp; Leah M. Flick; Kiwon Park; Samir Softic; Todd M. Greer; Raquel Keledjian; Rong Yang; Jasmin Uddin; William B. Guggino; Sowsan F. Atabani; Yasmine Belkaid; Yan Xu; Jeffrey A. Whitsett; Frank J. Accurso; Marsha Wills-Karp; Nicos A. Petasis

In cystic fibrosis, dysregulated neutrophilic inflammation and chronic infection lead to progressive destruction of the airways. The underlying mechanisms have remained unclear. Lipoxins are anti-inflammatory lipid mediators that modulate neutrophilic inflammation. We report here that lipoxin concentrations in airway fluid were significantly suppressed in patients with cystic fibrosis compared to patients with other inflammatory lung conditions. We also show that administration of a metabolically stable lipoxin analog in a mouse model of the chronic airway inflammation and infection associated with cystic fibrosis suppressed neutrophilic inflammation, decreased pulmonary bacterial burden and attenuated disease severity. These findings suggest that there is a pathophysiologically important defect in lipoxin-mediated anti-inflammatory activity in the cystic fibrosis lung and that lipoxins have therapeutic potential in this lethal autosomal disease.


Journal of Experimental Medicine | 2002

A Role for Immune Complexes in Enhanced Respiratory Syncytial Virus Disease

Fernando P. Polack; Michael N. Teng; Peter L. Collins; Gregory A. Prince; Marcus Exner; Heinz Regele; Dario D. Lirman; Richard Rabold; Scott J. Hoffman; Christopher L. Karp; Steven R. Kleeberger; Marsha Wills-Karp; Ruth A. Karron

Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral pneumonia in infants and young children. Administration of a formalin inactivated vaccine against RSV to children in the 1960s resulted in increased morbidity and mortality in vaccine recipients who subsequently contracted RSV. This incident precluded development of subunit RSV vaccines for infants for over 30 years, because the mechanism of illness was never clarified. An RSV vaccine for infants is still not available. Here, we demonstrate that enhanced RSV disease is mediated by immune complexes and abrogated in complement component C3 and B cell–deficient mice but not in controls. Further, we show correlation with the enhanced disease observed in children by providing evidence of complement activation in postmortem lung sections from children with enhanced RSV disease.

Collaboration


Dive into the Christopher L. Karp's collaboration.

Top Co-Authors

Avatar

Senad Divanovic

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rajat Madan

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leah M. Flick

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasmine Belkaid

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Isaac T.W. Harley

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jessica L. Allen

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Larry M. Wahl

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge