Christopher L. King
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher L. King.
Journal of Clinical Investigation | 1993
Christopher L. King; Siddhartha Mahanty; V. Kumaraswami; John S. Abrams; Jaya Regunathan; Kunthala Jayaraman; Eric A. Ottesen; Thomas B. Nutman
The immunological mechanisms involved in maintenance of an asymptomatic microfilaremic state (MF) in patients with lymphatic filariasis remain undefined. MF patients have impaired filarial antigen (Ag)-specific lymphocyte proliferation and decreased frequencies (Fo) of Ag-specific T cells, and yet elevated serum IgE and antifilarial IgG4. To investigate the mechanism of Ag-specific anergy in MF patients in contrast to amicrofilaremic individuals with chronic lymphatic obstruction (CP), the Fo of Ag-specific lymphocytes from peripheral blood mononuclear cells secreting either IL-4 or IFN-gamma were assessed by filter spot enzyme-linked immunosorbent assay, and IL-10 and transforming growth factor-beta (TGF-beta) mRNA transcript levels were assessed by a semiquantitative reverse transcriptase polymerase chain reaction technique. The Fo of filaria-specific IL-4-secreting lymphocytes were equivalent in both MF (geometric mean [GM] = 1:11,700) and CP (GM = 1:29,300 P = 0.08), whereas the Fo of IFN-gamma-secreting lymphocytes were lower in MF (GM = 1:39,300) than in CP (GM = 1:4,200, P < 0.01). When the ratio of IL-4/IFN-gamma (T helper type 2 [Th2]/Th1)-secreting cells was examined, MF subjects showed a predominant Th2 response (8:1) compared with a Th1 response in CP individuals (1:4). mRNA transcript levels of IL-10 were also significantly elevated in MF compared with CP individuals (P < 0.01). Further, IL-10 and TGF-beta were shown to have a role in modulating the Ag-specific anergy among MF subjects, in that neutralizing anti-IL-10 or anti-TGF-beta significantly enhanced lymphocyte proliferation response (by 220-1,300%) to filarial Ags in MF individuals. These findings demonstrate that MF subjects respond to parasite antigen by producing a set of suppressive cytokines that may facilitate persistence of the parasite within humans while producing little clinical disease.
Nature Immunology | 2011
Mercy Prabhudas; Becky Adkins; Hayley A. Gans; Christopher L. King; Ofer Levy; Octavio Ramilo; Claire-Anne Siegrist
Infections in infants continue to be an important cause of morbidity and mortality worldwide. Understanding the immune mechanisms that operate in infants is necessary for the development of new approaches to improve the health of infants around the world.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Didier Ménard; Céline Barnadas; Christiane Bouchier; Cara N. Henry-Halldin; Laurie R. Gray; Arsène Ratsimbasoa; Vincent Thonier; Jean François Carod; Olivier Domarle; Yves Colin; Olivier Bertrand; Julien Picot; Christopher L. King; Brian T. Grimberg; Odile Mercereau-Puijalon; Peter A. Zimmerman
Malaria therapy, experimental, and epidemiological studies have shown that erythrocyte Duffy blood group-negative people, largely of African ancestry, are resistant to erythrocyte Plasmodium vivax infection. These findings established a paradigm that the Duffy antigen is required for P. vivax erythrocyte invasion. P. vivax is endemic in Madagascar, where admixture of Duffy-negative and Duffy-positive populations of diverse ethnic backgrounds has occurred over 2 millennia. There, we investigated susceptibility to P. vivax blood-stage infection and disease in association with Duffy blood group polymorphism. Duffy blood group genotyping identified 72% Duffy-negative individuals (FY*BES/*BES) in community surveys conducted at eight sentinel sites. Flow cytometry and adsorption–elution results confirmed the absence of Duffy antigen expression on Duffy-negative erythrocytes. P. vivax PCR positivity was observed in 8.8% (42/476) of asymptomatic Duffy-negative people. Clinical vivax malaria was identified in Duffy-negative subjects with nine P. vivax monoinfections and eight mixed Plasmodium species infections that included P. vivax (4.9 and 4.4% of 183 participants, respectively). Microscopy examination of blood smears confirmed blood-stage development of P. vivax, including gametocytes. Genotyping of polymorphic surface and microsatellite markers suggested that multiple P. vivax strains were infecting Duffy-negative people. In Madagascar, P. vivax has broken through its dependence on the Duffy antigen for establishing human blood-stage infection and disease. Further studies are necessary to identify the parasite and host molecules that enable this Duffy-independent P. vivax invasion of human erythrocytes.
Infection and Immunity | 2009
Danielle I. Stanisic; Jack S. Richards; Fiona J. McCallum; Pascal Michon; Christopher L. King; Sonja Schoepflin; Paul R. Gilson; Vincent John. Murphy; Robin F. Anders; Ivo Mueller; James G. Beeson
ABSTRACT Substantial evidence indicates that antibodies to Plasmodium falciparum merozoite antigens play a role in protection from malaria, although the precise targets and mechanisms mediating immunity remain unclear. Different malaria antigens induce distinct immunoglobulin G (IgG) subclass responses, but the importance of different responses in protective immunity from malaria is not known and the factors determining subclass responses in vivo are poorly understood. We examined IgG and IgG subclass responses to the merozoite antigens MSP1-19 (the 19-kDa C-terminal region of merozoite surface protein 1), MSP2 (merozoite surface protein 2), and AMA-1 (apical membrane antigen 1), including different polymorphic variants of these antigens, in a longitudinal cohort of children in Papua New Guinea. IgG1 and IgG3 were the predominant subclasses of antibodies to each antigen, and all antibody responses increased in association with age and exposure without evidence of increasing polarization toward one subclass. The profiles of IgG subclasses differed somewhat for different alleles of MSP2 but not for different variants of AMA-1. Individuals did not appear to have a propensity to make a specific subclass response irrespective of the antigen. Instead, data suggest that subclass responses to each antigen are generated independently among individuals and that antigen properties, rather than host factors, are the major determinants of IgG subclass responses. High levels of AMA-1-specific IgG3 and MSP1-19-specific IgG1 were strongly predictive of a reduced risk of symptomatic malaria and high-density P. falciparum infections. However, no antibody response was significantly associated with protection from parasitization per se. Our findings have major implications for understanding human immunity and for malaria vaccine development and evaluation.
Journal of Immunology | 2004
Chandy C. John; Rebecca A. O'Donnell; Peter Odada Sumba; Ann M. Moormann; Tania F. de Koning-Ward; Christopher L. King; James W. Kazura; Brendan S. Crabb
The C-terminal 19-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP-119) is a target of protective Abs against blood-stage infection and a leading candidate for inclusion in a human malaria vaccine. However, the precise role, relative importance, and mechanism of action of Abs that target this protein remain unclear. To examine the potential protective role of Abs to MSP-119 in individuals naturally exposed to malaria, we conducted a treatment time to infection study over a 10-wk period in 76 residents of a highland area of western Kenya during a malaria epidemic. These semi-immune individuals were not all equally susceptible to reinfection with P. falciparum following drug cure. Using a new neutralization assay based on transgenic P. falciparum expressing the P. chabaudi MSP-119 orthologue, individuals with high-level MSP-119-specific invasion-inhibitory Abs (>75th percentile) had a 66% reduction in the risk of blood-stage infection relative to others in the population (95% confidence interval, 3–88%). In contrast, high levels of MSP-119 IgG or IgG subclass Abs measured by enzyme immunoassay with six different recombinant MSP-119 Ags did not correlate with protection from infection. IgG Abs measured by serology and functional invasion-inhibitory activity did not correlate with each other. These findings implicate an important protective role for MSP-119-specific invasion inhibitory Abs in immunity to blood-stage P. falciparum infection, and suggest that the measurement of MSP-119 specific inhibitory Abs may serve as an accurate correlate of protection in clinical trials of MSP-1-based vaccines.
PLOS Medicine | 2007
Brian T. Grimberg; Rachanee Udomsangpetch; Jia Xainli; Amy M. McHenry; Tasanee Panichakul; Jetsumon Sattabongkot; Liwang Cui; Moses J. Bockarie; Chetan E. Chitnis; John H. Adams; Peter A. Zimmerman; Christopher L. King
Background Plasmodium vivax invasion requires interaction between the human Duffy antigen on the surface of erythrocytes and the P. vivax Duffy binding protein (PvDBP) expressed by the parasite. Given that Duffy-negative individuals are resistant and that Duffy-negative heterozygotes show reduced susceptibility to blood-stage infection, we hypothesized that antibodies directed against region two of P. vivax Duffy binding protein (PvDBPII) would inhibit P. vivax invasion of human erythrocytes. Methods and Findings Using a recombinant region two of the P. vivax Duffy binding protein (rPvDBPII), polyclonal antibodies were generated from immunized rabbits and affinity purified from the pooled sera of 14 P. vivax–exposed Papua New Guineans. It was determined by ELISA and by flow cytometry, respectively, that both rabbit and human antibodies inhibited binding of rPvDBPII to the Duffy antigen N-terminal region and to Duffy-positive human erythrocytes. Additionally, using immunofluorescent microscopy, the antibodies were shown to attach to native PvDBP on the apical end of the P. vivax merozoite. In vitro invasion assays, using blood isolates from individuals in the Mae Sot district of Thailand, showed that addition of rabbit anti-PvDBPII Ab or serum (antibodies against, or serum containing antibodies against, region two of the Plasmodium vivax Duffy binding protein) (1:100) reduced the number of parasite invasions by up to 64%, while pooled PvDBPII antisera from P. vivax–exposed people reduced P. vivax invasion by up to 54%. Conclusions These results show, for what we believe to be the first time, that both rabbit and human antibodies directed against PvDBPII reduce invasion efficiency of wild P. vivax isolated from infected patients, and suggest that a PvDBP-based vaccine may reduce human blood-stage P. vivax infection.
Journal of Clinical Investigation | 1997
Indu Malhotra; John H. Ouma; Alex Wamachi; John Kioko; Peter Mungai; Adams Omollo; Lynne H. Elson; Davy K. Koech; James W. Kazura; Christopher L. King
Neonates exposed to parasite antigens (Ags) in utero may develop altered fetal immunity that could affect subsequent responses to infection. We hypothesized that cord blood lymphocytes (CBL) from offspring of mothers residing in an area highly endemic for schistosomiasis, filariasis, and tuberculosis in Kenya would either fail to respond or generate a predominantly Th2-associated cytokine response to helminth and mycobacterial antigens (PPD) in vitro compared to maternal PBMC. Kenyan CBL generated helminth Ag-specific IL-5 (range 29-194 pg/ml), IL-10 (121-2,115 pg/ml), and/or IFN-gamma (78 pg/ml-10.6 ng/ml) in 26, 46, and 57% of neonates, respectively (n = 40). PPD induced IFN-gamma in 30% of Kenyan CBL (range 79-1,896 pg/ml), but little or no IL-4 or IL-5. No Ag-specific IL-4, IL-5, or IFN-gamma release was detected by CBL obtained in the United States (n = 11). Ag-driven cytokine production was primarily CD4-dependent. Cytokine responses to helminth and mycobacterial Ags by maternal PBMC mirrored that observed in neonates. CBL from helminth infected and/or PPD-sensitized mothers produced more Ag-specific cytokines compared to CBL from uninfected mothers (P < 0.05). These data demonstrate that the human fetus develops similar patterns of cytokine production observed in adults and indicates that prenatal exposure may not lead to tolerance or altered fetal immunity. .
Journal of Immunology | 2013
Jack S. Richards; Thangavelu U. Arumugam; Linda Reiling; Julie Healer; Anthony N. Hodder; Freya J. I. Fowkes; Nadia Cross; Christine Langer; Satoru Takeo; Alessandro D. Uboldi; Jennifer K. Thompson; Paul R. Gilson; Ross L. Coppel; Peter Siba; Christopher L. King; Motomi Torii; Chetan E. Chitnis; David L. Narum; Ivo Mueller; Brendan S. Crabb; Alan F. Cowman; Takafumi Tsuboi; James G. Beeson
The development of effective malaria vaccines and immune biomarkers of malaria is a high priority for malaria control and elimination. Ags expressed by merozoites of Plasmodium falciparum are likely to be important targets of human immunity and are promising vaccine candidates, but very few Ags have been studied. We developed an approach to assess Ab responses to a comprehensive repertoire of merozoite proteins and investigate whether they are targets of protective Abs. We expressed 91 recombinant proteins, located on the merozoite surface or within invasion organelles, and screened them for quality and reactivity to human Abs. Subsequently, Abs to 46 proteins were studied in a longitudinal cohort of 206 Papua New Guinean children to define Ab acquisition and associations with protective immunity. Ab responses were higher among older children and those with active parasitemia. High-level Ab responses to rhoptry and microneme proteins that function in erythrocyte invasion were identified as being most strongly associated with protective immunity compared with other Ags. Additionally, Abs to new or understudied Ags were more strongly associated with protection than were Abs to current vaccine candidates that have progressed to phase 1 or 2 vaccine trials. Combinations of Ab responses were identified that were more strongly associated with protective immunity than responses to their single-Ag components. This study identifies Ags that are likely to be key targets of protective human immunity and facilitates the prioritization of Ags for further evaluation as vaccine candidates and/or for use as biomarkers of immunity in malaria surveillance and control.
PLOS Medicine | 2009
Indu Malhotra; Arlene E. Dent; Peter Mungai; Alex Wamachi; John H. Ouma; David L. Narum; Eric M. Muchiri; Daniel J. Tisch; Christopher L. King
In a prospective cohort study of newborns residing in a malaria holoendemic area of Kenya, Christopher King and colleagues find a subset of children born to malaria-infected women who acquire a tolerant phenotype, which persists into childhood and is associated with increased susceptibility to malarial infection and anemia.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Christopher L. King; Pascal Michon; Ahmad Rushdi Shakri; Alexandra Marcotty; Danielle I. Stanisic; Peter A. Zimmerman; Jennifer L. Cole-Tobian; Ivo Mueller; Chetan E. Chitnis
Individuals residing in malaria-endemic regions acquire protective immunity after repeated infection with malaria parasites; however, mechanisms of protective immunity and their immune correlates are poorly understood. Blood-stage infection with Plasmodium vivax depends completely on interaction of P. vivax Duffy-binding protein (PvDBP) with the Duffy antigen on host erythrocytes. Here, we performed a prospective cohort treatment/reinfection study of children (5–14 years) residing in a P. vivax-endemic region of Papua New Guinea (PNG) in which children were cleared of blood-stage infection and then examined biweekly for reinfection for 25 weeks. To test the hypothesis that naturally acquired binding inhibitory antibodies (BIAbs) targeting PvDBP region II (PvDBPII) provide protection against P. vivax infection, we used a quantitative receptor-binding assay to distinguish between antibodies that merely recognize PvDBP and those that inhibit binding to Duffy. The presence of high-level BIAbs (>90% inhibition of PvDBPII-Duffy binding, n = 18) before treatment was associated with delayed time to P. vivax reinfection diagnosed by light microscopy (P = 0.02), 55% reduced risk of P. vivax reinfection (Hazards ratio = 0.45, P = 0.04), and 48% reduction in geometric mean P. vivax parasitemia (P < 0.001) when compared with children with low-level BIAbs (n = 148). Further, we found that stable, high-level BIAbs displayed strain-transcending inhibition by reducing reinfection with similar efficiency of PNG P. vivax strains characterized by six diverse PvDBPII haplotypes. These observations demonstrate a functional correlate of protective immunity in vivo and provide support for developing a vaccine against P. vivax malaria based on PvDBPII.