Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John H. Adams is active.

Publication


Featured researches published by John H. Adams.


Nature | 2008

Comparative genomics of the neglected human malaria parasite Plasmodium vivax.

Jane M. Carlton; John H. Adams; Joana C. Silva; Shelby Bidwell; Hernan Lorenzi; Elisabet Caler; Jonathan Crabtree; Samuel V. Angiuoli; Emilio F. Merino; Paolo Amedeo; Qin Cheng; Richard M. R. Coulson; Brendan S. Crabb; Hernando A. del Portillo; Kobby Essien; Tamara V. Feldblyum; Carmen Fernandez-Becerra; Paul R. Gilson; Amy H. Gueye; Xiang Guo; Simon Kang’a; Taco W. A. Kooij; Michael L. J. Korsinczky; Esmeralda V. S. Meyer; Vish Nene; Ian T. Paulsen; Owen White; Stuart A. Ralph; Qinghu Ren; Tobias Sargeant

The human malaria parasite Plasmodium vivax is responsible for 25–40% of the ∼515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.


Cell | 1990

The duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites.

John H. Adams; Dlana E. Hudson; Motomi Torii; Gary E. Ward; Thomas E. Wellems; Masamichi Aikawa; Louis H. Miller

Plasmodium vivax and Plasmodium knowlesi merozoites invade human erythrocytes that express Duffy blood group surface determinants. A soluble parasite protein of 135 kd binds specifically to a human Duffy antigen. Using antisera affinity purified on the 135 kd protein, we cloned a gene that encodes a member of a P. knowlesi family of erythrocyte binding proteins. The gene is a member of a family that includes three homologous genes located on separate chromosomes. Two genes are expressed as major membrane-bound products that give rise to soluble erythrocyte binding proteins: the 135 kd Duffy binding protein and a 138 kd protein that binds only rhesus erythrocytes. These different erythrocyte binding specificities may result from sequence divergence of the homologous genes. The Duffy receptor family is localized in micronemes, an organelle found in all organisms of the phylum Apicomplexa.


PLOS Medicine | 2007

Plasmodium vivax Invasion of Human Erythrocytes Inhibited by Antibodies Directed against the Duffy Binding Protein

Brian T. Grimberg; Rachanee Udomsangpetch; Jia Xainli; Amy M. McHenry; Tasanee Panichakul; Jetsumon Sattabongkot; Liwang Cui; Moses J. Bockarie; Chetan E. Chitnis; John H. Adams; Peter A. Zimmerman; Christopher L. King

Background Plasmodium vivax invasion requires interaction between the human Duffy antigen on the surface of erythrocytes and the P. vivax Duffy binding protein (PvDBP) expressed by the parasite. Given that Duffy-negative individuals are resistant and that Duffy-negative heterozygotes show reduced susceptibility to blood-stage infection, we hypothesized that antibodies directed against region two of P. vivax Duffy binding protein (PvDBPII) would inhibit P. vivax invasion of human erythrocytes. Methods and Findings Using a recombinant region two of the P. vivax Duffy binding protein (rPvDBPII), polyclonal antibodies were generated from immunized rabbits and affinity purified from the pooled sera of 14 P. vivax–exposed Papua New Guineans. It was determined by ELISA and by flow cytometry, respectively, that both rabbit and human antibodies inhibited binding of rPvDBPII to the Duffy antigen N-terminal region and to Duffy-positive human erythrocytes. Additionally, using immunofluorescent microscopy, the antibodies were shown to attach to native PvDBP on the apical end of the P. vivax merozoite. In vitro invasion assays, using blood isolates from individuals in the Mae Sot district of Thailand, showed that addition of rabbit anti-PvDBPII Ab or serum (antibodies against, or serum containing antibodies against, region two of the Plasmodium vivax Duffy binding protein) (1:100) reduced the number of parasite invasions by up to 64%, while pooled PvDBPII antisera from P. vivax–exposed people reduced P. vivax invasion by up to 54%. Conclusions These results show, for what we believe to be the first time, that both rabbit and human antibodies directed against PvDBPII reduce invasion efficiency of wild P. vivax isolated from infected patients, and suggest that a PvDBP-based vaccine may reduce human blood-stage P. vivax infection.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Exploring the transcriptome of the malaria sporozoite stage

Stefan H. I. Kappe; Malcolm J. Gardner; Stuart M. Brown; Jessica Ross; Kai Matuschewski; José M. C. Ribeiro; John H. Adams; John Quackenbush; Jennifer Cho; Daniel J. Carucci; Stephen L. Hoffman; Victor Nussenzweig

Most studies of gene expression in Plasmodium have been concerned with asexual and/or sexual erythrocytic stages. Identification and cloning of genes expressed in the preerythrocytic stages lag far behind. We have constructed a high quality cDNA library of the Plasmodium sporozoite stage by using the rodent malaria parasite P. yoelii, an important model for malaria vaccine development. The technical obstacles associated with limited amounts of RNA material were overcome by PCR-amplifying the transcriptome before cloning. Contamination with mosquito RNA was negligible. Generation of 1,972 expressed sequence tags (EST) resulted in a total of 1,547 unique sequences, allowing insight into sporozoite gene expression. The circumsporozoite protein (CS) and the sporozoite surface protein 2 (SSP2) are well represented in the data set. A blastx search with all tags of the nonredundant protein database gave only 161 unique significant matches (P(N) ≤ 10−4), whereas 1,386 of the unique sequences represented novel sporozoite-expressed genes. We identified ESTs for three proteins that may be involved in host cell invasion and documented their expression in sporozoites. These data should facilitate our understanding of the preerythrocytic Plasmodium life cycle stages and the development of preerythrocytic vaccines.


PLOS Pathogens | 2008

The Malaria Secretome: From Algorithms to Essential Function in Blood Stage Infection

Christiaan van Ooij; Pamela A. Tamez; Souvik Bhattacharjee; N. Luisa Hiller; Travis Harrison; Konstantinos Liolios; Taco W. A. Kooij; Jai Ramesar; Bharath Balu; John H. Adams; Andrew P. Waters; Chris J. Janse; Kasturi Haldar

The malaria agent Plasmodium falciparum is predicted to export a “secretome” of several hundred proteins to remodel the host erythrocyte. Prediction of protein export is based on the presence of an ER-type signal sequence and a downstream Host-Targeting (HT) motif (which is similar to, but distinct from, the closely related Plasmodium Export Element [PEXEL]). Previous attempts to determine the entire secretome, using either the HT-motif or the PEXEL, have yielded large sets of proteins, which have not been comprehensively tested. We present here an expanded secretome that is optimized for both P. falciparum signal sequences and the HT-motif. From the most conservative of these three secretome predictions, we identify 11 proteins that are preserved across human- and rodent-infecting Plasmodium species. The conservation of these proteins likely indicates that they perform important functions in the interaction with and remodeling of the host erythrocyte important for all Plasmodium parasites. Using the piggyBac transposition system, we validate their export and find a positive prediction rate of ∼70%. Even for proteins identified by all secretomes, the positive prediction rate is not likely to exceed ∼75%. Attempted deletions of the genes encoding the conserved exported proteins were not successful, but additional functional analyses revealed the first conserved secretome function. This gave new insight into mechanisms for the assembly of the parasite-induced tubovesicular network needed for import of nutrients into the infected erythrocyte. Thus, genomic screens combined with functional assays provide unexpected and fundamental insights into host remodeling by this major human pathogen.


Infection and Immunity | 2000

Naturally Acquired and Vaccine-Elicited Antibodies Block Erythrocyte Cytoadherence of the Plasmodium vivax Duffy Binding Protein

Pascal Michon; Tresa S. Fraser; John H. Adams

ABSTRACT Malaria merozoites require the presence of specific surface receptors on the red blood cell for invasion. Plasmodium vivax, requires the Duffy blood group antigen as an obligate receptor for invasion. The parasite Duffy binding protein (DBP) is the ligand involved in this process, making the DBP a potential vaccine candidate. A preliminary objective was to study whether people exposed to vivax malaria acquire antibodies that have the ability to block erythrocyte cytoadherence to the PvDBP. In comparison, we studied the immunogenicity of various recombinant DBP vaccines and investigated their potential to induct antifunctional antibodies. In order to do so, recombinant proteins to different regions of the putative ectodomain of the DBP and a DNA vaccine were used to immunize laboratory animals. An in vitro cytoadherence assay was used to investigate the presence of antifunctional antibodies in plasmas from people naturally exposed to vivax malaria, as well as in antisera obtained by animal vaccination. Our results showed that human plasma from populations naturally exposed to vivax malaria, as well as antisera obtained by vaccination using recombinant proteins, a DNA vaccine, and a synthetic peptide to DBP, inhibited in vitro binding of human erythrocytes to the DBP ligand domain (DBPII) in correlation to their previously measured antibody titer. Our results provide further evidence for the vaccine potential of this essential parasite adhesion molecule.


Blood | 2011

A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax

Bruce Russell; Rossarin Suwanarusk; Céline Borlon; Fabio T. M. Costa; Cindy S. Chu; Marcus J. Rijken; Kanlaya Sriprawat; Lucile Warter; Esther G. L. Koh; Benoit Malleret; Yves Colin; Olivier Bertrand; John H. Adams; Umberto D'Alessandro; Georges Snounou; François Nosten; Laurent Rénia

Currently, there are no reliable RBC invasion assays to guide the discovery of vaccines against Plasmodium vivax, the most prevalent malaria parasite in Asia and South America. Here we describe a protocol for an ex vivo P vivax invasion assay that can be easily deployed in laboratories located in endemic countries. The assay is based on mixing enriched cord blood reticulocytes with matured, trypsin-treated P vivax schizonts concentrated from clinical isolates. The reliability of this assay was demonstrated using a large panel of P vivax isolates freshly collected from patients in Thailand.


Molecular and Biochemical Parasitology | 2000

The erythrocyte binding motif of plasmodium vivax duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea.

Jia Xainli; John H. Adams; Christopher L. King

The Duffy binding protein (DBP) of Plasmodium vivax is a critical adhesion ligand that participates in merozoite invasion of human Duffy positive reticulocytes. Binding domains have been shown to lie within a conserved N-terminal cyteine-rich region, region II, that contains 330-aa and the critical binding residues have been recently mapped to 170-aa stretch within this region. Previous studies on few isolates indicated a significant degree of polymorphism in region II (DBPII). To examine further the degree of variability of DBPII, and whether these variants produce functional changes, DBPII was amplified by nested PCR from 24 isolates from Papua New Guinea, and the amplicons were cloned and sequenced. One synonymous and 18 non-synonymous mutations were identified. Altogether, 93% of the cumulative polymorphisms lie within the 170-aa region. Targeted surface expression of region II of two different alleles on the surface of Cos7 cells did not affect their binding to Duffy positive erythrocytes. These results indicate that polymorphisms in the critical binding motifs do not alter its function. If DBPII variation arose to avert mechanisms of protective immunity targeting the DBP, vaccine development employing the parasite binding ligand may require strategies to minimize the effect of this polymorphism.


Journal of Biological Chemistry | 2004

Analysis of the Plasmodium and Anopheles Transcriptomes during Oocyst Differentiation

Prakash Srinivasan; Eappen G. Abraham; Anil K. Ghosh; Jesus G. Valenzuela; Jose M.C. Ribeiro; George Dimopoulos; Fotis C. Kafatos; John H. Adams; Hisashi Fujioka; Marcelo Jacobs-Lorena

Understanding the life cycle of the malaria parasite in its mosquito vector is essential for developing new strategies to combat this disease. Subtractive hybridization cDNA libraries were constructed that are enriched for Plasmodium berghei and Anopheles stephensi genes expressed during oocyst differentiation on the midgut. Sequencing of 1485 random clones led to the identification of 1137 unique expressed sequence tags. Of the 608 expressed sequence tags with data base hits, 320 (53%) had significant matches to the non-redundant protein data base, whereas 288 (47%) with matches only to genomic data bases represent novel Plasmodium and Anopheles genes. Transcription of six novel parasite genes and two previously identified asexual stage genes was up-regulated during oocyst differentiation. In addition, the mRNA for an Anopheles fibrinogen domain gene was induced on day 2 after an infectious blood meal, at the time of ookinete to oocyst differentiation. The subcellular distribution of MAEBL, a sporozoite surface protein, is developmentally regulated from presumed storage organelles in day 15 oocysts to uniform distribution on the surface in day 22 oocysts. This redistribution may reflect a sporozoite maturation program in preparation for salivary gland invasion. Furthermore, apical membrane antigen 1, another parasite surface molecule, is translationally regulated late in sporozoite development, suggesting a role during infection of the vertebrate host. The present results and those of an accompanying report (Abraham, E. G., Islam, S., Srinivasan, P., Ghosh, A. K., Valenzuela, J., Ribeiro, J. M., Kafatos, F. C., Dimopoulos, G., & Jacobs-Lorena, M. (2003) J. Biol. Chem. 279, 5573-5580) provide the foundation for studies seeking to understand at the molecular level Plasmodium development and its interactions with the mosquito.


The Journal of Infectious Diseases | 2004

Antigenic Drift in the Ligand Domain of Plasmodium vivax Duffy Binding Protein Confers Resistance to Inhibitory Antibodies

Kelley M. VanBuskirk; Jennifer L. Cole Tobian; Moses Baisor; Elitza Sevova; Moses J. Bockarie; Christopher L. King; John H. Adams

Interaction of the Duffy binding protein (DBP) with its erythrocyte receptor is critical for maintaining Plasmodium vivax blood-stage infections, making DBP an appealing vaccine candidate. The cysteine-rich region II is the ligand domain of DBP and a target of vaccine development. Interestingly, most of the allelic diversity observed in DBP is due to the high rate of nonsynonymous polymorphisms in this critical domain for receptor recognition. Similar to the hypervariability in influenza hemagglutinin, this pattern of polymorphisms in the DBP ligand domain suggests that this variation is a mechanism to evade antibody neutralization. To evaluate the role that dbp allelic diversity plays in strain-specific immunity, we examined the ability of an anti-Sal1 DBP serum to inhibit the erythrocyte-binding function of variant dbp alleles expressed on COS cells. We observed that the PNG-7.18 allele was significantly less sensitive to immune inhibition of its erythrocyte-binding activity than were the Sal1 and PNG-27.16 alleles. This result suggested that the unique polymorphisms of resistant PNG-7.18 were part of a protective epitope on the DBP ligand. To confirm this, Sal1 was converted to the refractory phenotype by introduction of 3 polymorphisms unique to PNG-7.18, via site-directed mutagenesis. The results of the present study indicate that linked polymorphisms have an additive, synergistic effect on DBP antigenic character.

Collaboration


Dive into the John H. Adams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bharath Balu

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Amy M. McHenry

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Christopher L. King

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Samantha J. Barnes

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Naresh Singh

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Steven P. Maher

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Jia Xainli

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesse Schloegel

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge