Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Lominska is active.

Publication


Featured researches published by Christopher Lominska.


Neurosurgery | 2012

Risk Factors for Posttreatment Edema in Patients Treated With Stereotactic Radiosurgery for Meningiomas

Keith Unger; Christopher Lominska; June Chanyasulkit; Pamela Randolph-Jackson; Robert L. White; Edward Aulisi; Jeffrey Jacobson; Walter Jean; Gregory Gagnon

BACKGROUND Peritumoral edema is a recognized complication following stereotactic radiosurgery (SRS). OBJECTIVE To evaluate the risk of posttreatment peritumoral edema following SRS for intracranial meningiomas and determine predictive factors. METHODS Between 2002 and 2008, 173 evaluable patients underwent CyberKnife or Gamma Knife SRS for meningiomas. Eighty-four patients (49%) had prior surgical resections, 13 patients had World Health Organization grade II (atypical) meningiomas, and 117 patients had a neurological deficit before SRS. Sixty-two tumors were in parasagittal, parafalcine, and convexity locations. The median tumor volume was 4.7 mL (range, 0.1-231.8 mL). The median prescribed dose and median prescribed biologically equivalent dose were 15 Gy (range, 9-40 Gy) and 67 Gy (range, 14-116 Gy), respectively. Ninety-seven patients were treated with single-fraction SRS, 74 received 2 to 5 fractions, and 2 received >5 fractions. RESULTS The median follow-up was 21.0 months. Thirteen patients (8%) developed symptomatic peritumoral edema, with a median onset time of 4.5 months (range, 0.2-9.5 months). The 3-, 6-, 12-, and 24-month actuarial symptomatic edema rates were 2.9%, 4.9%, 7.7%, and 8.5%, respectively. The crude tumor control rate was 94%. On univariate analysis, large tumor volume (P = .01) and single-fraction SRS (P = .04) were predictive for development of posttreatment edema. CONCLUSION SRS meningioma treatment demonstrated a low incidence of toxicity; however, large tumor volumes and single-fraction SRS treatment had an increased risk for posttreatment edema. Risk factors for edema should be considered in meningiomas treatment.


Frontiers in Oncology | 2015

Locally Advanced Breast Implant-Associated Anaplastic Large-Cell Lymphoma: A Case Report of Successful Treatment with Radiation and Chemotherapy

Christopher Fleighton Estes; Da Zhang; Ruben Reyes; Richard Korentager; Marilee McGinness; Christopher Lominska

The development of breast implant-associated anaplastic large-cell lymphoma (ALCL) is a rare phenomenon. A typical presentation is an effusion associated with a breast implant. Less commonly, disease can be more advanced locoregionally or distantly. The optimal treatment schema is a topic of debate: localized ALCL can potentially be cured with implant removal alone, while other cases in the literature, including those that are more advanced, have been treated with varying combinations of surgery, chemotherapy, and external beam radiotherapy. This is a case report of breast implant ALCL with pathologically proven lymph node involvement, the fifth such patient reported. Our patient experienced a favorable outcome with radiation therapy and chemotherapy.


Journal of Applied Clinical Medical Physics | 2016

Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy

D. Pokhrel; S.S. Sood; R.K. Badkul; H. Jiang; Christopher McClinton; Christopher Lominska; P. Kumar; F. Wang

The purpose of the study was to evaluate Monte Carlo‐generated dose distributions with the X‐ray Voxel Monte Carlo (XVMC) algorithm in the treatment of peripheral lung cancer patients using stereotactic body radiotherapy (SBRT) with non‐protocol dose‐volume normalization and to assess plan outcomes utilizing RTOG 0915 dosimetric compliance criteria. The Radiation Therapy Oncology Group (RTOG) protocols for non‐small cell lung cancer (NSCLC) currently require radiation dose to be calculated using tissue density heterogeneity corrections. Dosimetric criteria of RTOG 0915 were established based on superposition/convolution or heterogeneities corrected pencil beam (PB‐hete) algorithms for dose calculations. Clinically, more accurate Monte Carlo (MC)‐based algorithms are now routinely used for lung stereotactic body radiotherapy (SBRT) dose calculations. Hence, it is important to determine whether MC calculations in the delivery of lung SBRT can achieve RTOG standards. In this report, we evaluate iPlan generated MC plans for peripheral lung cancer patients treated with SBRT using dose‐volume histogram (DVH) normalization to determine if the RTOG 0915 compliance criteria can be met. This study evaluated 20 Stage I‐II NSCLC patients with peripherally located lung tumors, who underwent MC‐based SBRT with heterogeneity correction using X‐ray Voxel Monte Carlo (XVMC) algorithm (Brainlab iPlan version 4.1.2). Total dose of 50 to 54 Gy in 3 to 5 fractions was delivered to the planning target volume (PTV) with at least 95% of the PTV receiving 100% of the prescription dose (V100%≥95%). The internal target volume (ITV) was delineated on maximum intensity projection (MIP) images of 4D CT scans. The PTV included the ITV plus 5 mm uniform margin applied to the ITV. The PTV ranged from 11.1 to 163.0 cc (mean=46.1±38.7 cc). Organs at risk (OARs) including ribs were delineated on mean intensity projection (MeanIP) images of 4D CT scans. Optimal clinical MC SBRT plans were generated using a combination of 3D noncoplanar conformal arcs and nonopposing static beams for the Novalis‐TX linear accelerator consisting of high‐definition multileaf collimators (HD‐MLCs: 2.5 mm leaf width at isocenter) and 6 MV‐SRS (1000 MU/min) beam. All treatment plans were evaluated using the RTOG 0915 high‐ and intermediate‐dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2cm), and percent of normal lung receiving 20 Gy V20 or more. Other OAR doses were documented, including the volume of normal lung receiving 5 Gy V5 or more, dose to <0.35 cc of spinal cord, and dose to 1000 cc of total normal lung tissue. The dose to <1 cc, <5 cc, <10 cc of ribs, as well as maximum point dose as a function of PTV, prescription dose, and a 3D distance from the tumor isocenter to the proximity of the rib contour were also examined. The biological effective dose (BED) with α/β ratio of 3 Gy for ribs was analyzed. All 20 patients either fully met or were within the minor deviation dosimetric compliance criteria of RTOG 0915 while using DVH normalization. However, only 5 of the 20 patients fully met all the criteria. Ten of 20 patients had minor deviations in R100% (mean=1.25±0.09), 13 in R50% (mean=4.5±0.6), and 11 in D2cm (mean=61.9±8.5). Lung V20, dose to 1000 cc of normal lung, and dose to <0.35 cc of spinal cord were met in accordance with RTOG criteria in 95%, 100%, and 100%, respectively, with exception of one patient who exhibited the largest PTV (163 cc) and experienced a minor deviation in lung V20 (mean=4.7±3.4%). The 3D distance from the tumor isocenter to the proximal rib contour strongly correlated with maximum rib dose. The average values of BED3Gy for maximum point dose and dose to <1 cc of ribs were higher by a factor of 1.5 using XVMC compared to RTOG 0915 guidelines. The preliminary results for our iPlan XVMC dose analyses indicate that the majority (i.e., 75% of patient population) of our patients had minor deviations when compared to the dosimetric guidelines set by RTOG 0915 protocol. When using an exclusively sophisticated XVMC algorithm and DVH normalization, the RTOG 0915 dosimetric compliance criteria such as R100%, R50%, and D2cm may need to be revised. On average, about 7% for R100%, 13% for R50%, and 14% for D2cm corrections from the mean values were necessary to pass the RTOG 0915 compliance criteria. Another option includes rescaling of the prescription dose. No further adjustment is necessary for OAR dose tolerances including normal lung V20 and total normal lung 1000 cc. Since all the clinical MC plans were generated without compromising the target coverage, rib dose was on the higher side of the protocol guidelines. As expected, larger tumor size and proximity to ribs correlated to higher absolute dose to ribs. These patients will be clinically followed to determine whether delivered MC‐computed dose to PTV and the ribs dose correlate with tumor control and severe chest wall pain and/or rib fractures. In order to establish new specific MC‐based dose parameters, further dosimetric studies with a large cohort of MC lung SBRT patients will need to be conducted. PACS number(s): 87.55.kThe purpose of the study was to evaluate Monte Carlo-generated dose distributions with the X-ray Voxel Monte Carlo (XVMC) algorithm in the treatment of peripheral lung cancer patients using stereotactic body radiotherapy (SBRT) with non-protocol dose-volume normalization and to assess plan outcomes utilizing RTOG 0915 dosimetric compliance criteria. The Radiation Therapy Oncology Group (RTOG) protocols for non-small cell lung cancer (NSCLC) currently require radiation dose to be calculated using tissue density heterogeneity corrections. Dosimetric criteria of RTOG 0915 were established based on superposition/convolution or heterogeneities corrected pencil beam (PB-hete) algorithms for dose calculations. Clinically, more accurate Monte Carlo (MC)-based algorithms are now routinely used for lung stereotactic body radiotherapy (SBRT) dose calculations. Hence, it is important to determine whether MC calculations in the delivery of lung SBRT can achieve RTOG standards. In this report, we evaluate iPlan generated MC plans for peripheral lung cancer patients treated with SBRT using dose-volume histogram (DVH) normalization to determine if the RTOG 0915 compliance criteria can be met. This study evaluated 20 Stage I-II NSCLC patients with peripherally located lung tumors, who underwent MC-based SBRT with heterogeneity correction using X-ray Voxel Monte Carlo (XVMC) algorithm (Brainlab iPlan version 4.1.2). Total dose of 50 to 54 Gy in 3 to 5 fractions was delivered to the planning target volume (PTV) with at least 95% of the PTV receiving 100% of the prescription dose (V100%≥95%). The internal target volume (ITV) was delineated on maximum intensity projection (MIP) images of 4D CT scans. The PTV included the ITV plus 5 mm uniform margin applied to the ITV. The PTV ranged from 11.1 to 163.0 cc (mean=46.1±38.7 cc). Organs at risk (OARs) including ribs were delineated on mean intensity projection (MeanIP) images of 4D CT scans. Optimal clinical MC SBRT plans were generated using a combination of 3D noncoplanar conformal arcs and nonopposing static beams for the Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV-SRS (1000 MU/min) beam. All treatment plans were evaluated using the RTOG 0915 high- and intermediate-dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2cm), and percent of normal lung receiving 20 Gy V20 or more. Other OAR doses were documented, including the volume of normal lung receiving 5 Gy V5 or more, dose to <0.35 cc of spinal cord, and dose to 1000 cc of total normal lung tissue. The dose to <1 cc, <5 cc, <10 cc of ribs, as well as maximum point dose as a function of PTV, prescription dose, and a 3D distance from the tumor isocenter to the proximity of the rib contour were also examined. The biological effective dose (BED) with α/β ratio of 3 Gy for ribs was analyzed. All 20 patients either fully met or were within the minor deviation dosimetric compliance criteria of RTOG 0915 while using DVH normalization. However, only 5 of the 20 patients fully met all the criteria. Ten of 20 patients had minor deviations in R100% (mean=1.25±0.09), 13 in R50% (mean=4.5±0.6), and 11 in D2cm (mean=61.9±8.5). Lung V20, dose to 1000 cc of normal lung, and dose to <0.35 cc of spinal cord were met in accordance with RTOG criteria in 95%, 100%, and 100%, respectively, with exception of one patient who exhibited the largest PTV (163 cc) and experienced a minor deviation in lung V20 (mean=4.7±3.4%). The 3D distance from the tumor isocenter to the proximal rib contour strongly correlated with maximum rib dose. The average values of BED3Gy for maximum point dose and dose to <1 cc of ribs were higher by a factor of 1.5 using XVMC compared to RTOG 0915 guidelines. The preliminary results for our iPlan XVMC dose analyses indicate that the majority (i.e., 75% of patient population) of our patients had minor deviations when compared to the dosimetric guidelines set by RTOG 0915 protocol. When using an exclusively sophisticated XVMC algorithm and DVH normalization, the RTOG 0915 dosimetric compliance criteria such as R100%, R50%, and D2cm may need to be revised. On average, about 7% for R100%, 13% for R50%, and 14% for D2cm corrections from the mean values were necessary to pass the RTOG 0915 compliance criteria. Another option includes rescaling of the prescription dose. No further adjustment is necessary for OAR dose tolerances including normal lung V20 and total normal lung 1000 cc. Since all the clinical MC plans were generated without compromising the target coverage, rib dose was on the higher side of the protocol guidelines. As expected, larger tumor size and proximity to ribs correlated to higher absolute dose to ribs. These patients will be clinically followed to determine whether delivered MC-computed dose to PTV and the ribs dose correlate with tumor control and severe chest wall pain and/or rib fractures. In order to establish new specific MC-based dose parameters, further dosimetric studies with a large cohort of MC lung SBRT patients will need to be conducted. PACS number(s): 87.55.k.


Medical Dosimetry | 2017

On the use of volumetric-modulated arc therapy for single-fraction thoracic vertebral metastases stereotactic body radiosurgery

D. Pokhrel; S.S. Sood; Christopher McClinton; Xinglei Shen; R.K. Badkul; H. Jiang; Matthew Mallory; Mellissa Mitchell; F. Wang; Christopher Lominska

To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planning target volumes (PTV) were between 14.4 and 230.1cc (median = 38.0cc). Prescription dose was 16Gy in 1 fraction with 6MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV_1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D0.03cc, D0.35cc), partial spinal cord (D10%), esophagus (D0.03cc and D5cc), heart (D0.03cc and D15cc), and lung (V5, V10, and maximum dose to 1000cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2mm and 3%/3mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly conformal and homogenous coverage of the vertebral PTV with mean HI, conformality index, conformation number, and R50% values of 0.13 ± 0.03 (range: 0.09 to 0.18), 1.03 ± 0.04 (range: 0.98 to 1.09), 0.81 ± 0.06 (range: 0.72 to 0.89), and 4.2 ± 0.94 (range: 2.7 to 5.4), respectively. All 10 patients met protocol guidelines with maximum dose to spinal cord (average: 8.83 ± 1.9Gy, range: 5.9 to 10.9Gy); dose to 0.35cc of spinal cord (average: 7.62 ± 1.7Gy, range: 5.4 to 9.6Gy); and dose to 10% of partial spinal cord (average 6.31 ± 1.5Gy, range: 3.5 to 8.5Gy) less than 14, 10, and 10Gy, respectively. For all 10 patients, the maximum dose to esophagus (average: 9.41 ± 4.3Gy, range: 1.5 to 14.9Gy) and dose to 5cc of esophagus (average: 7.43 ± 3.8Gy, range: 1.1 to 11.8Gy) were kept less than protocol requirements 16Gy and 11.9Gy, respectively. In a similar manner, all 10 patients met protocol compliance criteria with maximum dose to heart (average: 4.62 ± 3.5Gy, range: 1.3 to 10.2Gy) and dose to 15cc of heart (average: 2.23 ± 1.8Gy, range: 0.3 to 5.6Gy) less than 22 and 16Gy, respectively. The dose to the lung was retained much lower than protocol guidelines for all 10 patients. The total number of monitor units was, on average, 6919 ± 1187. The average beam-on time was 11.5 ± 2.0 minutes. The VMAT plans demonstrated dose delivery accuracy of 95.8 ± 0.7%, on average, for clinical gamma passing rate with 2%/2mm criteria and 98.3 ± 0.8%, on average, with 3%/3mm criteria. All VMAT-SBRS plans were considered clinically acceptable per RTOG 0631 dosimetric compliance criteria. VMAT planning provided highly conformal and homogenous dose distributions for the lower-dose vertebral PTV and the spinal cord as well as organs-at-risk such as esophagus, heart, and lung. Higher QA pass rates and shorter beam-on time suggest that VMAT-SBRS is a clinically feasible, fast, and effective treatment option for patients with thoracic vertebral metastases.


Frontiers in Oncology | 2012

Survival Outcomes of Patients Treated with Hypofractionated Stereotactic Body Radiation Therapy for Parotid Gland Tumors: a Retrospective Analysis

Sana D. Karam; J.W. Snider; Hongkun Wang; Margaux Wooster; Christopher Lominska; John F. Deeken; Kenneth Newkirk; Bruce J. Davidson; K. William Harter

Background: to review a single-institution experience with the management of parotid malignancies treated by fractionated stereotactic body radiosurgery (SBRT). Findings: Between 2003 and 2011, 13 patients diagnosed with parotid malignancies were treated with adjuvant or definitive SBRT to a median dose of 33 Gy (range 25–40 Gy). There were 11 male and two female patients with a median age of 80. Ten patients declined conventional radiation treatment and three patients had received prior unrelated radiation therapy to neighboring structures with unavailable radiation records. Six patients were treated with definitive intent while seven patients were treated adjuvantly for adverse surgical or pathologic features. Five patients had clinical or pathologic evidence of lymph node disease. Conclusion: at a median follow-up of 14 months only one patient failed locally, and four failed distantly. The actuarial 2-year overall survival, progression-free survival, and local-regional control rates were 46, 84, and 47%, respectively. Statistical analysis revealed surgery as a positive predictor of overall survival while presence of gross disease was a negatively correlated factor (p < 0.05).


Medical Dosimetry | 2016

Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy

D. Pokhrel; S.S. Sood; Christopher McClinton; Xinglei Shen; Christopher Lominska; H Saleh; R.K. Badkul; H. Jiang; M.P. Mitchell; F. Wang

PURPOSE To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). MATERIALS AND METHODS A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured on T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30Gy for WB-PTV and 45Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. RESULTS All 5 HS-WBRT with SIB plans met WB-PTV D2%, D98%, and V30Gy NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5 hippocampal sparing patients met protocol guidelines with maximum dose and dose to 100% of hippocampus (D100%) less than 16 and 9Gy, respectively. The dose to the optic apparatus was kept below protocol guidelines for all 5 patients. Highly conformal and homogenous radiosurgical dose distributions were achieved for all 5 patients with a total of 33 brain metastases. The m-BM PTVs had a mean HI = 0.09 ± 0.02 (range: 0.07 to 0.19) and a mean CI = 1.02 ± 0.06 (range: 0.93 to 1.2). The total number of monitor units (MU) was, on average, 1677 ± 166. The average beam-on time was 4.1 ± 0.4 minute . The IMAT plans demonstrated accurate dose delivery of 95.2 ± 0.6%, on average, for clinical gamma passing rate with 2%/2-mm criteria and 98.5 ± 0.9%, on average, with 3%/3-mm criteria. CONCLUSIONS All hippocampal sparing plans were considered clinically acceptable per NRG-CC001 dosimetric compliance criteria. IMAT planning provided highly conformal and homogenous dose distributions for the WB-PTV and m-BM PTVs with lower doses to OAR such as the hippocampus. These results suggest that HS-WBRT with SIB is a clinically feasible, fast, and effective treatment option for patients with a relatively large numbers of m-BM lesions.


Journal of Applied Clinical Medical Physics | 2016

Monte Carlo evaluation of tissue heterogeneities corrections in the treatment of head and neck cancer patients using stereotactic radiotherapy

D. Pokhrel; Christopher McClinton; S.S. Sood; R.K. Badkul; H Saleh; H. Jiang; Christopher Lominska

The purpose of this study was to generate Monte Carlo computed dose distributions with the X-ray voxel Monte Carlo (XVMC) algorithm in the treatment of head and neck cancer patients using stereotactic radiotherapy (SRT) and compare to heterogeneity corrected pencil-beam (PB-hete) algorithm. This study includes 10 head and neck cancer patients who underwent SRT re-irradiation using heterogeneity corrected pencil-beam (PB-hete) algorithm for dose calculation. Prescription dose was 24-40 Gy in 3-5 fractions (treated 3-5 fractions per week) with at least 95% of the PTV volume receiving 100% of the prescription dose. A stereotactic head and neck localization box was attached to the base of the thermoplastic mask fixation for target localization. The gross tumor volume (GTV) and organs-at-risk (OARs) were contoured on the 3D CT images. The planning target volume (PTV) was generated from the GTV with 0 to 5 mm uniform expansion; PTV ranged from 10.2 to 64.3 cc (average=35.0±17.5 cc). OARs were contoured on the 3D planning CT and consisted of spinal cord, brainstem, optic structures, parotids, and skin. In the BrainLab treatment planning system (TPS), clinically optimal SRT plans were generated using hybrid planning technique (combination of 3D conformal noncoplanar arcs and nonopposing static beams) for the Novalis-Tx linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV-SRS (1000 MU/min) beam. For the purposes of this study, treatment plans were recomputed using XVMC algorithm utilizing identical beam geometry, multileaf positions, and monitor units and compared to the corresponding clinical PB-hete plans. The Monte Carlo calculated dose distributions show small decreases (<1.5%) in calculated dose for D99, Dmean, and Dmax of the PTV coverage between the two algorithms. However, the average target volume encompassed by the prescribed percent dose (Vp) was about 2.5% less with XVMC vs. PB-hete and ranged between -0.1 and 7.8%. The averages for D100 and D10 of the GTV were lower by about 2% and ranged between -0.8 and 3.1%. For the spinal cord, both the maximal dose difference and the dose to 0.35 cc of the structure were higher by an average of 4.2% (ranged 1.2 to -13.6%) and 1.4% (ranged 7.5 to -11.3%), respectively, with XVMC calculation. For the brainstem, the maximal dose differences and the dose to 0.5 cc of the structure were, on average, higher by 2.4% (ranged 6.4 to -8.0%) and 3.6% (ranged 6.4 to -9.0%), respectively. For the parotids, both the mean dose and the dose to 20 cc of parotids were higher by an average of 3% (ranged -0.2 to -5.9%) and 4% (ranged -0.2 to -8%), respectively, with XVMC calculation. For the optic apparatus, results from both algorithms were similar. However, the mean dose to skin was 3% higher (ranged 0 to -6%), on average, with XVMC compared to PB-hete, although the maximum dose to skin was 2% lower (ranged -5% to 15.5%). The results from our XVMC dose calculations for head and neck SRT patients indicate small to moderate underdosing of the tumor volume when compared to PB-hete calculation. However, Vp was up to 7.8% less for the lower-neck patient with XVMC. Critical structures, such as spinal cord, brainstem, or parotids, could potentially receive higher doses when using XVMC algorithm. Given the proximity to critical structures and the smaller volumes treated with SRT in the region of the head and neck, the differences between XVMC and PB-hete calculation methods may be of clinical interest. PACS number(s): 87.55.K.The purpose of this study was to generate Monte Carlo computed dose distributions with the X‐ray voxel Monte Carlo (XVMC) algorithm in the treatment of head and neck cancer patients using stereotactic radiotherapy (SRT) and compare to heterogeneity corrected pencil‐beam (PB‐hete) algorithm. This study includes 10 head and neck cancer patients who underwent SRT re‐irradiation using heterogeneity corrected pencil‐beam (PB‐hete) algorithm for dose calculation. Prescription dose was 24‐40 Gy in 3‐5 fractions (treated 3‐5 fractions per week) with at least 95% of the PTV volume receiving 100% of the prescription dose. A stereotactic head and neck localization box was attached to the base of the thermoplastic mask fixation for target localization. The gross tumor volume (GTV) and organs‐at‐risk (OARs) were contoured on the 3D CT images. The planning target volume (PTV) was generated from the GTV with 0 to 5 mm uniform expansion; PTV ranged from 10.2 to 64.3 cc (average=35.0±17.5 cc). OARs were contoured on the 3D planning CT and consisted of spinal cord, brainstem, optic structures, parotids, and skin. In the BrainLab treatment planning system (TPS), clinically optimal SRT plans were generated using hybrid planning technique (combination of 3D conformal noncoplanar arcs and nonopposing static beams) for the Novalis‐Tx linear accelerator consisting of high‐definition multileaf collimators (HD‐MLCs: 2.5 mm leaf width at isocenter) and 6 MV‐SRS (1000 MU/min) beam. For the purposes of this study, treatment plans were recomputed using XVMC algorithm utilizing identical beam geometry, multileaf positions, and monitor units and compared to the corresponding clinical PB‐hete plans. The Monte Carlo calculated dose distributions show small decreases (<1.5%) in calculated dose for D99,Dmean, and Dmax of the PTV coverage between the two algorithms. However, the average target volume encompassed by the prescribed percent dose (Vp) was about 2.5% less with XVMC vs. PB‐hete and ranged between ‐0.1 and 7.8%. The averages for D100 and D10 of the GTV were lower by about 2% and ranged between ‐0.8 and 3.1%. For the spinal cord, both the maximal dose difference and the dose to 0.35 cc of the structure were higher by an average of 4.2% (ranged 1.2 to −13.6%) and 1.4% (ranged 7.5 to −11.3%), respectively, with XVMC calculation. For the brainstem, the maximal dose differences and the dose to 0.5 cc of the structure were, on average, higher by 2.4% (ranged 6.4 to −8.0%) and 3.6% (ranged 6.4 to −9.0%), respectively. For the parotids, both the mean dose and the dose to 20 cc of parotids were higher by an average of 3% (ranged ‐0.2 to −5.9%) and 4% (ranged ‐0.2 to ‐8%), respectively, with XVMC calculation. For the optic apparatus, results from both algorithms were similar. However, the mean dose to skin was 3% higher (ranged 0 to ‐6%), on average, with XVMC compared to PB‐hete, although the maximum dose to skin was 2% lower (ranged −5% to 15.5%). The results from our XVMC dose calculations for head and neck SRT patients indicate small to moderate underdosing of the tumor volume when compared to PB‐hete calculation. However, Vp was up to 7.8% less for the lower‐neck patient with XVMC. Critical structures, such as spinal cord, brainstem, or parotids, could potentially receive higher doses when using XVMC algorithm. Given the proximity to critical structures and the smaller volumes treated with SRT in the region of the head and neck, the differences between XVMC and PB‐hete calculation methods may be of clinical interest. PACS number(s): 87.55.K‐


Journal of Applied Clinical Medical Physics | 2018

Volumetric modulated arc therapy treatment planning of thoracic vertebral metastases using stereotactic body radiotherapy

Matthew Mallory; Damodar Pokhrel; R.K. Badkul; H. Jiang; Christopher Lominska; F. Wang

Abstract Purpose/Objectives To retrospectively evaluate the plan quality, treatment efficiency, and accuracy of volumetric modulated arc therapy (VMAT) plans for thoracic spine metastases using stereotactic body radiotherapy (SBRT). Materials/Methods Seven patients with thoracic vertebral metastases treated with noncoplanar hybrid arcs (NCHA) (1 to 2 3D‐conformal partial arcs +7 to 9 IMRT beams) were re‐optimized with VMAT plans using three coplanar arcs. Tumors were located between T2 and T7 and PTVs ranged between 24.3 and 240.1 cc (median 48.1 cc). All prescriptions were 30 Gy in 5 fractions with 6 MV beams treated using the Novalis Tx linac equipped with high definition multileaf collimators (HDMLC). MR images were fused with planning CTs for target and OAR contouring. Plans were compared for target coverage using conformality index (CI), homogeneity index (HI), D90, D98, D2, and Dmedian. Normal tissue sparing was evaluated by comparing doses to the spinal cord (Dmax, D0.35, and D1.2 cc), esophagus (Dmax and D5 cc), heart (Dmax, D15 cc), and lung (V5 and V10). Data analysis was performed with a two‐sided t‐test for each set of parameters. Dose delivery efficiency and accuracy of each VMAT plan was assessed via quality assurance (QA) using a MapCHECK device. The Beam‐on time (BOT) was recorded, and a gamma index was used to compare dose agreement between the planned and measured doses. Results VMAT plans resulted in improved CI (1.02 vs. 1.36, P = 0.05), HI (0.14 vs. 0.27, P = 0.01), D98 (28.4 vs. 26.8 Gy, P = 0.03), D2 (32.9 vs. 36.0 Gy, P = 0.02), and Dmedian (31.4 vs. 33.7 Gy, P = 0.01). D90 was improved but not statistically significant (30.4 vs. 31.0 Gy, P = 0.38). VMAT plans showed statistically significant improvements in normal tissue sparing: Esophagus Dmax (22.5 vs. 27.0 Gy, P = 0.03), Esophagus 5 cc (17.6 vs. 21.5 Gy, P = 0.02), and Heart Dmax (13.1 vs. 15.8 Gy, P = 0.03). Improvements were also observed in spinal cord and lung sparing as well but were not statistically significant. The BOT showed significant reduction for VMAT, 4.7 ± 0.6 min vs. 7.1 ± 1 min for NCHA (not accounting for couch kicks). VMAT plans demonstrated an accurate dose delivery of 95.5 ± 1.0% for clinical gamma passing rate of 3%/3 mm criteria, which was similar to NCHA plans. Conclusions VMAT plans have shown improved dose distributions and normal tissue sparing compared to NCHA plans. Significant reductions in treatment time could potentially minimize patient discomfort and intrafraction movement errors. VMAT planning for SBRT is an attractive option for the treatment of metastases to thoracic vertebrae, and further investigation using alternative fractionation schedules is warranted.


Medical Physics | 2016

SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

R.K. Badkul; Kaleigh Doke; D. Pokhrel; Nathan Aguilera; Christopher Lominska

PURPOSE Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing(FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. METHODS Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. RESULTS All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. CONCLUSION This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.


Medical Physics | 2016

SU-F-T-560: Measurement of Dose Blurring Effect Due to Respiratory Motion for Lung Stereotactic Body Radiation Therapy (SBRT) Using Monte Carlo Based Calculation Algorithm.

R.K. Badkul; D. Pokhrel; T Ramanjappa; H. Jiang; Christopher Lominska; F. Wang

PURPOSE Intra-fractional tumor motion due to respiration may potentially compromise dose delivery for SBRT of lung tumors. Even sufficient margins are used to ensure there is no geometric miss of target volume, there is potential dose blurring effect may present due to motion and could impact the tumor coverage if motions are larger. In this study we investigated dose blurring effect of open fields as well as Lung SBRT patients planned using 2 non-coplanar dynamic conformal arcs(NCDCA) and few conformal beams(CB) calculated with Monte Carlo (MC) based algorithm utilizing phantom with 2D-diode array(MapCheck) and ion-chamber. METHODS SBRT lung patients were planned on Brainlab-iPlan system using 4D-CT scan and ITV were contoured on MIP image set and verified on all breathing phase image sets to account for breathing motion and then 5mm margin was applied to generate PTV. Plans were created using two NCDCA and 4-5 CB 6MV photon calculated using XVMC MC-algorithm. 3 SBRT patients plans were transferred to phantom with MapCheck and 0.125cc ion-chamber inserted in the middle of phantom to calculate dose. Also open field 3×3, 5×5 and 10×10 were calculated on this phantom. Phantom was placed on motion platform with varying motion from 5, 10, 20 and 30 mm with duty cycle of 4 second. Measurements were carried out for open fields as well 3 patients plans at static and various degree of motions. MapCheck planar dose and ion-chamber reading were collected and compared with static measurements and computed values to evaluate the dosimetric effect on tumor coverage due to motion. RESULTS To eliminate complexity of patients plan 3 simple open fields were also measured to see the dose blurring effect with the introduction of motion. All motion measured ionchamber values were normalized to corresponding static value. For open fields 5×5 and 10×10 normalized central axis ion-chamber values were 1.00 for all motions but for 3×3 they were 1 up to 10mm motion and 0.97 and 0.87 for 20 and 30mm motion respectively. For SBRT plans central axis dose values were within 1% upto 10mm motions but decreased to average of 5% for 20mm and 8% for 30mm motion. Mapcheck comparison with static showed penumbra enlargement due to motion blurring at the edges of the field for 3×3,5×5,10×10 pass rates were 88% to 12%, 100% to 43% and 100% to 63% respectively as motion increased from 5 to 30mm. For SBRT plans MapCheck mean pass rate were decreased from 73.8% to 39.5% as motion increased from 5mm to 30mm. CONCLUSION Dose blurring effect has been seen in open fields as well as SBRT lung plans using NCDCA with CB which worsens with increasing respiratory motion and decreasing field size(tumor size). To reduce this effect larger margins and appropriate motion reduction techniques should be utilized.

Collaboration


Dive into the Christopher Lominska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Jiang

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Wang

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Kumar

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge