Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Pokhrel is active.

Publication


Featured researches published by D. Pokhrel.


Journal of Applied Clinical Medical Physics | 2017

Linac‐based stereotactic radiosurgery (SRS) in the treatment of refractory trigeminal neuralgia: Detailed description of SRS procedure and reported clinical outcomes

D. Pokhrel; S.S. Sood; Christopher McClinton; H Saleh; R.K. Badkul; H. Jiang; Timothy Stepp; Paul Camarata; F. Wang

Purpose/Objectives To present our linac‐based SRS procedural technique for medically and/or surgically refractory trigeminal neuralgia (TN) treatment and simultaneously report our clinical outcomes. Materials and Methods Twenty‐seven refractory TN patients who were treated with a single fraction of 80 Gy to TN. Treatment delivery was performed with a 4 mm cone size using 7‐arc arrangement with differential‐weighting for Novalis‐TX with six MV‐SRS (1000 MU/min) beam and minimized dose to the brainstem. Before each treatment, Winston‐Lutz quality assurance (QA) with submillimeter accuracy was performed. Clinical treatment response was evaluated using Barrow Neurological Institute (BNI) pain intensity score, rated from I to V. Results Out of 27 patients, 22 (81%) and 5 (19%) suffered from typical and atypical TN, respectively, and had median follow‐up interval of 12.5 months (ranged: 1–53 months). For 80 Gy prescriptions, delivered total average MU was 19440 ± 611. Average beam‐on‐time was 19.4 ± 0.6 min. Maximum dose and dose to 0.5 cc of brainstem were 13.4 ± 2.1 Gy (ranged: 8.4–15.9 Gy) and 3.6 ± 0.4 Gy (ranged: 3.0–4.9 Gy), respectively. With a median follow‐up of 12.5 months (ranged: 1–45 months) in typical TN patients, the proportion of patients achieving overall pain relief was 82%, of which half achieved a complete pain relief with BNI score of I‐II and half demonstrated partial pain reduction with BNI score of IIIA‐IIIB. Four typical TN patients (18%) had no response to radiosurgery treatment. Of the patients who responded to treatment, actuarial pain recurrence free survival rates were approximately 100%, 75%, and 50% at 12 months, 15 months, and 24 months, respectively. Five atypical TN patients were included, who did not respond to treatment (BNI score: IV‐V). However, no radiation‐induced cranial‐toxicity was observed in all patients treated. Conclusion Linac‐based SRS for medically and/or surgically refractory TN is a fast, effective, and safe treatment option for patients with typical TN who had excellent response rates. Patients, who achieve response to treatment, often have durable response rates with moderate actuarial pain recurrence free survival. Longer follow‐up interval is anticipated to confirm our clinical observations.


Journal of Applied Clinical Medical Physics | 2016

Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy

D. Pokhrel; S.S. Sood; R.K. Badkul; H. Jiang; Christopher McClinton; Christopher Lominska; P. Kumar; F. Wang

The purpose of the study was to evaluate Monte Carlo‐generated dose distributions with the X‐ray Voxel Monte Carlo (XVMC) algorithm in the treatment of peripheral lung cancer patients using stereotactic body radiotherapy (SBRT) with non‐protocol dose‐volume normalization and to assess plan outcomes utilizing RTOG 0915 dosimetric compliance criteria. The Radiation Therapy Oncology Group (RTOG) protocols for non‐small cell lung cancer (NSCLC) currently require radiation dose to be calculated using tissue density heterogeneity corrections. Dosimetric criteria of RTOG 0915 were established based on superposition/convolution or heterogeneities corrected pencil beam (PB‐hete) algorithms for dose calculations. Clinically, more accurate Monte Carlo (MC)‐based algorithms are now routinely used for lung stereotactic body radiotherapy (SBRT) dose calculations. Hence, it is important to determine whether MC calculations in the delivery of lung SBRT can achieve RTOG standards. In this report, we evaluate iPlan generated MC plans for peripheral lung cancer patients treated with SBRT using dose‐volume histogram (DVH) normalization to determine if the RTOG 0915 compliance criteria can be met. This study evaluated 20 Stage I‐II NSCLC patients with peripherally located lung tumors, who underwent MC‐based SBRT with heterogeneity correction using X‐ray Voxel Monte Carlo (XVMC) algorithm (Brainlab iPlan version 4.1.2). Total dose of 50 to 54 Gy in 3 to 5 fractions was delivered to the planning target volume (PTV) with at least 95% of the PTV receiving 100% of the prescription dose (V100%≥95%). The internal target volume (ITV) was delineated on maximum intensity projection (MIP) images of 4D CT scans. The PTV included the ITV plus 5 mm uniform margin applied to the ITV. The PTV ranged from 11.1 to 163.0 cc (mean=46.1±38.7 cc). Organs at risk (OARs) including ribs were delineated on mean intensity projection (MeanIP) images of 4D CT scans. Optimal clinical MC SBRT plans were generated using a combination of 3D noncoplanar conformal arcs and nonopposing static beams for the Novalis‐TX linear accelerator consisting of high‐definition multileaf collimators (HD‐MLCs: 2.5 mm leaf width at isocenter) and 6 MV‐SRS (1000 MU/min) beam. All treatment plans were evaluated using the RTOG 0915 high‐ and intermediate‐dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2cm), and percent of normal lung receiving 20 Gy V20 or more. Other OAR doses were documented, including the volume of normal lung receiving 5 Gy V5 or more, dose to <0.35 cc of spinal cord, and dose to 1000 cc of total normal lung tissue. The dose to <1 cc, <5 cc, <10 cc of ribs, as well as maximum point dose as a function of PTV, prescription dose, and a 3D distance from the tumor isocenter to the proximity of the rib contour were also examined. The biological effective dose (BED) with α/β ratio of 3 Gy for ribs was analyzed. All 20 patients either fully met or were within the minor deviation dosimetric compliance criteria of RTOG 0915 while using DVH normalization. However, only 5 of the 20 patients fully met all the criteria. Ten of 20 patients had minor deviations in R100% (mean=1.25±0.09), 13 in R50% (mean=4.5±0.6), and 11 in D2cm (mean=61.9±8.5). Lung V20, dose to 1000 cc of normal lung, and dose to <0.35 cc of spinal cord were met in accordance with RTOG criteria in 95%, 100%, and 100%, respectively, with exception of one patient who exhibited the largest PTV (163 cc) and experienced a minor deviation in lung V20 (mean=4.7±3.4%). The 3D distance from the tumor isocenter to the proximal rib contour strongly correlated with maximum rib dose. The average values of BED3Gy for maximum point dose and dose to <1 cc of ribs were higher by a factor of 1.5 using XVMC compared to RTOG 0915 guidelines. The preliminary results for our iPlan XVMC dose analyses indicate that the majority (i.e., 75% of patient population) of our patients had minor deviations when compared to the dosimetric guidelines set by RTOG 0915 protocol. When using an exclusively sophisticated XVMC algorithm and DVH normalization, the RTOG 0915 dosimetric compliance criteria such as R100%, R50%, and D2cm may need to be revised. On average, about 7% for R100%, 13% for R50%, and 14% for D2cm corrections from the mean values were necessary to pass the RTOG 0915 compliance criteria. Another option includes rescaling of the prescription dose. No further adjustment is necessary for OAR dose tolerances including normal lung V20 and total normal lung 1000 cc. Since all the clinical MC plans were generated without compromising the target coverage, rib dose was on the higher side of the protocol guidelines. As expected, larger tumor size and proximity to ribs correlated to higher absolute dose to ribs. These patients will be clinically followed to determine whether delivered MC‐computed dose to PTV and the ribs dose correlate with tumor control and severe chest wall pain and/or rib fractures. In order to establish new specific MC‐based dose parameters, further dosimetric studies with a large cohort of MC lung SBRT patients will need to be conducted. PACS number(s): 87.55.kThe purpose of the study was to evaluate Monte Carlo-generated dose distributions with the X-ray Voxel Monte Carlo (XVMC) algorithm in the treatment of peripheral lung cancer patients using stereotactic body radiotherapy (SBRT) with non-protocol dose-volume normalization and to assess plan outcomes utilizing RTOG 0915 dosimetric compliance criteria. The Radiation Therapy Oncology Group (RTOG) protocols for non-small cell lung cancer (NSCLC) currently require radiation dose to be calculated using tissue density heterogeneity corrections. Dosimetric criteria of RTOG 0915 were established based on superposition/convolution or heterogeneities corrected pencil beam (PB-hete) algorithms for dose calculations. Clinically, more accurate Monte Carlo (MC)-based algorithms are now routinely used for lung stereotactic body radiotherapy (SBRT) dose calculations. Hence, it is important to determine whether MC calculations in the delivery of lung SBRT can achieve RTOG standards. In this report, we evaluate iPlan generated MC plans for peripheral lung cancer patients treated with SBRT using dose-volume histogram (DVH) normalization to determine if the RTOG 0915 compliance criteria can be met. This study evaluated 20 Stage I-II NSCLC patients with peripherally located lung tumors, who underwent MC-based SBRT with heterogeneity correction using X-ray Voxel Monte Carlo (XVMC) algorithm (Brainlab iPlan version 4.1.2). Total dose of 50 to 54 Gy in 3 to 5 fractions was delivered to the planning target volume (PTV) with at least 95% of the PTV receiving 100% of the prescription dose (V100%≥95%). The internal target volume (ITV) was delineated on maximum intensity projection (MIP) images of 4D CT scans. The PTV included the ITV plus 5 mm uniform margin applied to the ITV. The PTV ranged from 11.1 to 163.0 cc (mean=46.1±38.7 cc). Organs at risk (OARs) including ribs were delineated on mean intensity projection (MeanIP) images of 4D CT scans. Optimal clinical MC SBRT plans were generated using a combination of 3D noncoplanar conformal arcs and nonopposing static beams for the Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV-SRS (1000 MU/min) beam. All treatment plans were evaluated using the RTOG 0915 high- and intermediate-dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2cm), and percent of normal lung receiving 20 Gy V20 or more. Other OAR doses were documented, including the volume of normal lung receiving 5 Gy V5 or more, dose to <0.35 cc of spinal cord, and dose to 1000 cc of total normal lung tissue. The dose to <1 cc, <5 cc, <10 cc of ribs, as well as maximum point dose as a function of PTV, prescription dose, and a 3D distance from the tumor isocenter to the proximity of the rib contour were also examined. The biological effective dose (BED) with α/β ratio of 3 Gy for ribs was analyzed. All 20 patients either fully met or were within the minor deviation dosimetric compliance criteria of RTOG 0915 while using DVH normalization. However, only 5 of the 20 patients fully met all the criteria. Ten of 20 patients had minor deviations in R100% (mean=1.25±0.09), 13 in R50% (mean=4.5±0.6), and 11 in D2cm (mean=61.9±8.5). Lung V20, dose to 1000 cc of normal lung, and dose to <0.35 cc of spinal cord were met in accordance with RTOG criteria in 95%, 100%, and 100%, respectively, with exception of one patient who exhibited the largest PTV (163 cc) and experienced a minor deviation in lung V20 (mean=4.7±3.4%). The 3D distance from the tumor isocenter to the proximal rib contour strongly correlated with maximum rib dose. The average values of BED3Gy for maximum point dose and dose to <1 cc of ribs were higher by a factor of 1.5 using XVMC compared to RTOG 0915 guidelines. The preliminary results for our iPlan XVMC dose analyses indicate that the majority (i.e., 75% of patient population) of our patients had minor deviations when compared to the dosimetric guidelines set by RTOG 0915 protocol. When using an exclusively sophisticated XVMC algorithm and DVH normalization, the RTOG 0915 dosimetric compliance criteria such as R100%, R50%, and D2cm may need to be revised. On average, about 7% for R100%, 13% for R50%, and 14% for D2cm corrections from the mean values were necessary to pass the RTOG 0915 compliance criteria. Another option includes rescaling of the prescription dose. No further adjustment is necessary for OAR dose tolerances including normal lung V20 and total normal lung 1000 cc. Since all the clinical MC plans were generated without compromising the target coverage, rib dose was on the higher side of the protocol guidelines. As expected, larger tumor size and proximity to ribs correlated to higher absolute dose to ribs. These patients will be clinically followed to determine whether delivered MC-computed dose to PTV and the ribs dose correlate with tumor control and severe chest wall pain and/or rib fractures. In order to establish new specific MC-based dose parameters, further dosimetric studies with a large cohort of MC lung SBRT patients will need to be conducted. PACS number(s): 87.55.k.


Journal of Applied Clinical Medical Physics | 2015

Technical Note: Dosimetric evaluation of Monte Carlo algorithm in iPlan for stereotactic ablative body radiotherapy (SABR) for lung cancer patients using RTOG 0813 parameters

D. Pokhrel; R.K. Badkul; Hongyu Jiang; P. Kumar; F. Wang

For stereotactic ablative body radiotherapy (SABR) in lung cancer patients, Radiation Therapy Oncology Group (RTOG) protocols currently require radiation dose to be calculated using tissue heterogeneity corrections. Dosimetric criteria of RTOG 0813 were established based on the results obtained from non‐Monte Carlo (MC) algorithms, such as superposition/convolutions. Clinically, MC‐based algorithms are now routinely used for lung SABR dose calculations. It is essential to confirm that MC calculations in lung SABR meet RTOG guidelines. This report evaluates iPlan MC plans for SABR in lung cancer patients using dose‐volume histogram normalization per current RTOG 0813 compliance criteria. Eighteen Stage I‐II non‐small cell lung cancer (NSCLC) patients with centrally located tumors, who underwent MC‐based lung SABR with heterogeneity correction using X‐ray Voxel Monte Carlo (XVMC) algorithm (BrainLAB iPlan version 4.1.2), were analyzed. Total dose of 60 Gy in 5 fractions was delivered to planning target volume (PTV) with at least V100%=95%. Internal target volumes (ITVs) were delineated on maximum intensity projection (MIP) images of 4D CT scans. PTV (ITV+5 mm margin) volumes ranged from 10.0 to 99.9 cc (mean=36.8±20.7 cc). Organs at risk (OARs) were delineated on average images of 4D CT scans. Optimal clinical MC SABR plans were generated using a combination of non‐coplanar conformal arcs and beams for the Novalis‐TX consisting of high definition multileaf collimators (MLCs) and 6 MV‐SRS (1000MU/min) mode. All plans were evaluated using the RTOG 0813 high and intermediate dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2cm), and percent of normal lung receiving 20 Gy (V20) or more. Other organs‐at‐risk (OARs) doses were tabulated, including the volume of normal lung receiving 5 Gy (V5), maximum cord dose, dose to <15 cc of heart, and dose to <5 cc of esophagus. Only six out of 18 patients met all RTOG 0813 compliance criteria. Eight of 18 patients had minor deviations in R100%, four in R50%, and nine in D2cm. However, only one patient had minor deviation in V20. All other OARs doses, such as maximum cord dose, dose to <15 cc of heart, and dose to <5 cc of esophagus, were satisfactory for RTOG criteria, except for one patient, for whom the dose to <15 cc of heart was higher than RTOG guidelines. The preliminary results for our limited iPlan XVMC dose calculations indicate that the majority (i.e., 2/3) of our patients had minor deviations in the dosimetric guidelines set by RTOG 0813 protocol in one way or another. When using an exclusive highly sophisticated XVMC algorithm, the RTOG 0813 dosimetric compliance criteria such as R100% and D2cm may need to be revisited. Based on our limited number of patient datasets, in general, about 6% for R100% and 9% for D2cm corrections could be applied to pass the RTOG 0813 compliance criteria in most of those patients. More patient plans need to be evaluated to make recommendation for R50%. No adjustment is necessary for OAR dose tolerances, including normal lung V20. In order to establish new MC specific dose parameters, further investigation with a large cohort of patients including central, as well as peripheral lung tumors, is anticipated and strongly recommended. PACS number: 8087


Medical Dosimetry | 2017

On the use of volumetric-modulated arc therapy for single-fraction thoracic vertebral metastases stereotactic body radiosurgery

D. Pokhrel; S.S. Sood; Christopher McClinton; Xinglei Shen; R.K. Badkul; H. Jiang; Matthew Mallory; Mellissa Mitchell; F. Wang; Christopher Lominska

To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planning target volumes (PTV) were between 14.4 and 230.1cc (median = 38.0cc). Prescription dose was 16Gy in 1 fraction with 6MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV_1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D0.03cc, D0.35cc), partial spinal cord (D10%), esophagus (D0.03cc and D5cc), heart (D0.03cc and D15cc), and lung (V5, V10, and maximum dose to 1000cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2mm and 3%/3mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly conformal and homogenous coverage of the vertebral PTV with mean HI, conformality index, conformation number, and R50% values of 0.13 ± 0.03 (range: 0.09 to 0.18), 1.03 ± 0.04 (range: 0.98 to 1.09), 0.81 ± 0.06 (range: 0.72 to 0.89), and 4.2 ± 0.94 (range: 2.7 to 5.4), respectively. All 10 patients met protocol guidelines with maximum dose to spinal cord (average: 8.83 ± 1.9Gy, range: 5.9 to 10.9Gy); dose to 0.35cc of spinal cord (average: 7.62 ± 1.7Gy, range: 5.4 to 9.6Gy); and dose to 10% of partial spinal cord (average 6.31 ± 1.5Gy, range: 3.5 to 8.5Gy) less than 14, 10, and 10Gy, respectively. For all 10 patients, the maximum dose to esophagus (average: 9.41 ± 4.3Gy, range: 1.5 to 14.9Gy) and dose to 5cc of esophagus (average: 7.43 ± 3.8Gy, range: 1.1 to 11.8Gy) were kept less than protocol requirements 16Gy and 11.9Gy, respectively. In a similar manner, all 10 patients met protocol compliance criteria with maximum dose to heart (average: 4.62 ± 3.5Gy, range: 1.3 to 10.2Gy) and dose to 15cc of heart (average: 2.23 ± 1.8Gy, range: 0.3 to 5.6Gy) less than 22 and 16Gy, respectively. The dose to the lung was retained much lower than protocol guidelines for all 10 patients. The total number of monitor units was, on average, 6919 ± 1187. The average beam-on time was 11.5 ± 2.0 minutes. The VMAT plans demonstrated dose delivery accuracy of 95.8 ± 0.7%, on average, for clinical gamma passing rate with 2%/2mm criteria and 98.3 ± 0.8%, on average, with 3%/3mm criteria. All VMAT-SBRS plans were considered clinically acceptable per RTOG 0631 dosimetric compliance criteria. VMAT planning provided highly conformal and homogenous dose distributions for the lower-dose vertebral PTV and the spinal cord as well as organs-at-risk such as esophagus, heart, and lung. Higher QA pass rates and shorter beam-on time suggest that VMAT-SBRS is a clinically feasible, fast, and effective treatment option for patients with thoracic vertebral metastases.


Medical Physics | 2013

SU‐E‐T‐413: Dosimetric Evaluation and Clinical Implementation of IPlan Monte Carlo Algorithm For Lung Stereotactic Ablative Radiotherapy (SABR)

R.K. Badkul; D. Pokhrel; H. Jiang; F. Wang; P. Kumar

PURPOSE To evaluate, validate and compare dosimetric accuracy of commercially available iPlan Monte-Carlo(MC) dose algorithm for lung-SABR. Due to short comings of Pencil-Beam(PB) algorithm in regions of tissue inhomogeneity and advent of faster computing environment, ability to use more accurate MC based dose calculation algorithms is becoming more of a reality. This study presents a comparative analysis of dose calculations with 6MV using iPlan PB and MC algorithms with measured data utilizing lung anthropomorphic phantom. MATERIALS & METHODS For treatment planning and dose measurement purposes a QUASAR™ phantom with lung inserts and Ion-Chamber drills was utilized. Three different PTVs were drawn in phantom; two were in lungs and one in homogeneous region in midline of phantom. SABR planning were performed using three different techniques: DynamicArc, ConformalBeams and IMRT for each PTV. For planning purposes NovalisTx with HDMLC, 6MVSRS were used. Three different Ion-Chambers; 0.6cc, CC01 and CC13 were utilized to measure doses. PTV-maximum, PTV-minimum, PTV-mean doses and Ion-Chamber mean doses were collected from plans which were calculated using PB-corrected, PB-uncorrected and MC. RESULTS Agreement between MC and Ion-Chamber measurement were -1.1-1.64% (mean0.6%), 0.5-1.55% (mean1.17%) and -2.7-0.4% (mean-0.55%) for DynamicArc, ConformalBeams and IMRT respectively. Deviations between PB-corrected and measured values were 1.81-6.83% (mean4.4%), 2.73-8.63% (mean5.13%) and -1.28-1.24% (mean0.13%) for DynamicArc, ConformalBeams and IMRT respectively. Deviations between PB-uncorrected and measured values were -2.36- -3.8% (mean-2.96%), -1.88-- 3.04% (mean-2.46%) and -3.88--7.1% (mean-5.29%) for DynamicArc, ConformalBeams and IMRT respectively. The mean deviations for all techniques were 0.4%,3.22%,-1.93% for MC, PB-corrected and PB-uncorrected respectively. PTV dose comparison between different algorithms has also been analyzed. CONCLUSIONS This phantom study shows excellent agreement between doses calculated using iPlan Monte-Carlo versus measurements for 6MV beam in lung equivalent material. MC algorithm not only predicts accurate dose at isocenter but also at borders of tumors where Pencil-Beam overestimates the doses.


Medical Dosimetry | 2016

Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy

D. Pokhrel; S.S. Sood; Christopher McClinton; Xinglei Shen; Christopher Lominska; H Saleh; R.K. Badkul; H. Jiang; M.P. Mitchell; F. Wang

PURPOSE To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). MATERIALS AND METHODS A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured on T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30Gy for WB-PTV and 45Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. RESULTS All 5 HS-WBRT with SIB plans met WB-PTV D2%, D98%, and V30Gy NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5 hippocampal sparing patients met protocol guidelines with maximum dose and dose to 100% of hippocampus (D100%) less than 16 and 9Gy, respectively. The dose to the optic apparatus was kept below protocol guidelines for all 5 patients. Highly conformal and homogenous radiosurgical dose distributions were achieved for all 5 patients with a total of 33 brain metastases. The m-BM PTVs had a mean HI = 0.09 ± 0.02 (range: 0.07 to 0.19) and a mean CI = 1.02 ± 0.06 (range: 0.93 to 1.2). The total number of monitor units (MU) was, on average, 1677 ± 166. The average beam-on time was 4.1 ± 0.4 minute . The IMAT plans demonstrated accurate dose delivery of 95.2 ± 0.6%, on average, for clinical gamma passing rate with 2%/2-mm criteria and 98.5 ± 0.9%, on average, with 3%/3-mm criteria. CONCLUSIONS All hippocampal sparing plans were considered clinically acceptable per NRG-CC001 dosimetric compliance criteria. IMAT planning provided highly conformal and homogenous dose distributions for the WB-PTV and m-BM PTVs with lower doses to OAR such as the hippocampus. These results suggest that HS-WBRT with SIB is a clinically feasible, fast, and effective treatment option for patients with a relatively large numbers of m-BM lesions.


Medical Physics | 2014

SU-C-BRE-02: BED Vs. Local Control: Radiobiological Effect of Tumor Volume in Monte Carlo (MC) Lung SBRT Planning

D. Pokhrel; R.K. Badkul; H. Jiang; C Estes; J. Park; P. Kumar; F. Wang

PURPOSE SBRT with hypofractionated dose schemata has emerged a compelling treatment modality for medically inoperable early stage lung cancer patients. It requires more accurate dose calculation and treatment delivery technique. This report presents the relationship between tumor control probability(TCP) and size-adjusted biological effective dose(sBED) of tumor volume for MC lung SBRT patients. METHODS Fifteen patients who were treated with MC-based lung SBRT to 50Gy in 5 fractions to PTVV100%=95% were studied. ITVs were delineated on MIP images of 4DCT-scans. PTVs diameter(ITV+5mm margins) ranged from 2.7-4.9cm (mean 3.7cm). Plans were generated using non-coplanar conformal arcs/beams using iPlan XVMC algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX with HD-MLCs and 6MVSRS(1000MU/min) mode, following RTOG-0813 dosimetric guidelines. To understand the known uncertainties of conventional heterogeneities-corrected/uncorrected pencil beam (PBhete/ PB-homo) algorithms, dose distributions were re-calculated with PBhete/ PB-homo using same beam configurations, MLCs and monitor units. Biologically effective dose(BED10) was computed using LQ-model with α/β=10Gy for meanPTV and meanITV. BED10-c*L, gave size-adjusted BED(sBED), where c=10Gy/cm and L=PTV diameter in centimeter. The TCP model was adopted from Ohri et al.(IJROBP, 2012): TCP = exp[sBEDTCD50]/ k /(1.0 + exp[sBED-TCD50]/k), where k=31Gy corresponding to TCD50=0Gy; and more realistic MC-based TCP was computed for PTV(V99%). RESULTS Mean PTV PB-hete TCP value was 6% higher, but, mean PTV PB-homo TCP value was 4% lower compared to mean PTV MC TCP. Mean ITV PB-hete/PB-homo TCP values were comparable (within ±3.0%) to mean ITV MC TCP. The mean PTV(V99%)had BED10=90.9±3.7%(median=92.2%),sBED=54.1±8.2%(median=53.5%) corresponding to mean MC TCP value of 84.8±3.3%(median=84.9%) at 2- year local control. CONCLUSION The TCP model which incorporates BED10 and tumor diameter indicates that radiobiological effect of target volume and dose calculation algorithm significantly affects TCP for lung SBRT patients. Dose calculation using MC-based algorithm is more realistic with tissue heterogeneities and is routinely performed in our clinic. Patients will be followed up to determine whether TCP prediction correlate clinical outcomes.


Medical Physics | 2016

SU-F-T-622: Comparative Analysis of Pencil Beam and Anisotropic Analytical Algorithm (AAA) for Stereotactic Body Radiation Therapy (SBRT) of Thoracic Spine

R.K. Badkul; W Nicolai; D. Pokhrel; T Ramanjappa; H. Jiang; F. Wang; C Lominskac

PURPOSE To compare the impact of Pencil Beam(PB) and Anisotropic Analytic Algorithm(AAA) dose calculation algorithms on OARs and planning target volume (PTV) in thoracic spine stereotactic body radiation therapy (SBRT). METHODS Ten Spine SBRT patients were planned on Brainlab iPlan system using hybrid plan consisting of 1-2 non-coplanar conformal-dynamic arcs and few IMRT beams treated on NovalisTx with 6MV photon. Dose prescription varied from 20Gy to 30Gy in 5 fractions depending on the situation of the patient. PB plans were retrospectively recalculated using the Varian Eclipse with AAA algorithm using same MUs, MLC pattern and grid size(3mm).Differences in dose volume parameters for PTV, spinal cord, lung, and esophagus were analyzed and compared for PB and AAA algorithms. OAR constrains were followed per RTOG-0631. RESULTS Since patients were treated using PB calculation, we compared all the AAA DVH values with respect to PB plan values as standard, although AAA predicts the dose more accurately than PB. PTV(min), PTV(Max), PTV(mean), PTV(D99%), PTV(D90%) were overestimated with AAA calculation on average by 3.5%, 1.84%, 0.95%, 3.98% and 1.55% respectively as compared to PB. All lung DVH parameters were underestimated with AAA algorithm mean deviation of lung V20, V10, V5, and 1000cc were 42.81%,19.83%, 18.79%, and 18.35% respectively. AAA overestimated Cord(0.35cc) by mean of 17.3%; cord (0.03cc) by 12.19% and cord(max) by 10.5% as compared to PB. Esophagus max dose were overestimated by 4.4% and 5cc by 3.26% for AAA algorithm as compared to PB. CONCLUSION AAA overestimated the PTV dose values by up to 4%.The lung DVH had the greatest underestimation of dose by AAA versus PB. Spinal cord dose was overestimated by AAA versus PB. Given the critical importance of accuracy of OAR and PTV dose calculation for SBRT spine, more accurate algorithms and validation of calculated doses in phantom models are indicated.


Journal of Applied Clinical Medical Physics | 2016

Monte Carlo evaluation of tissue heterogeneities corrections in the treatment of head and neck cancer patients using stereotactic radiotherapy

D. Pokhrel; Christopher McClinton; S.S. Sood; R.K. Badkul; H Saleh; H. Jiang; Christopher Lominska

The purpose of this study was to generate Monte Carlo computed dose distributions with the X-ray voxel Monte Carlo (XVMC) algorithm in the treatment of head and neck cancer patients using stereotactic radiotherapy (SRT) and compare to heterogeneity corrected pencil-beam (PB-hete) algorithm. This study includes 10 head and neck cancer patients who underwent SRT re-irradiation using heterogeneity corrected pencil-beam (PB-hete) algorithm for dose calculation. Prescription dose was 24-40 Gy in 3-5 fractions (treated 3-5 fractions per week) with at least 95% of the PTV volume receiving 100% of the prescription dose. A stereotactic head and neck localization box was attached to the base of the thermoplastic mask fixation for target localization. The gross tumor volume (GTV) and organs-at-risk (OARs) were contoured on the 3D CT images. The planning target volume (PTV) was generated from the GTV with 0 to 5 mm uniform expansion; PTV ranged from 10.2 to 64.3 cc (average=35.0±17.5 cc). OARs were contoured on the 3D planning CT and consisted of spinal cord, brainstem, optic structures, parotids, and skin. In the BrainLab treatment planning system (TPS), clinically optimal SRT plans were generated using hybrid planning technique (combination of 3D conformal noncoplanar arcs and nonopposing static beams) for the Novalis-Tx linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV-SRS (1000 MU/min) beam. For the purposes of this study, treatment plans were recomputed using XVMC algorithm utilizing identical beam geometry, multileaf positions, and monitor units and compared to the corresponding clinical PB-hete plans. The Monte Carlo calculated dose distributions show small decreases (<1.5%) in calculated dose for D99, Dmean, and Dmax of the PTV coverage between the two algorithms. However, the average target volume encompassed by the prescribed percent dose (Vp) was about 2.5% less with XVMC vs. PB-hete and ranged between -0.1 and 7.8%. The averages for D100 and D10 of the GTV were lower by about 2% and ranged between -0.8 and 3.1%. For the spinal cord, both the maximal dose difference and the dose to 0.35 cc of the structure were higher by an average of 4.2% (ranged 1.2 to -13.6%) and 1.4% (ranged 7.5 to -11.3%), respectively, with XVMC calculation. For the brainstem, the maximal dose differences and the dose to 0.5 cc of the structure were, on average, higher by 2.4% (ranged 6.4 to -8.0%) and 3.6% (ranged 6.4 to -9.0%), respectively. For the parotids, both the mean dose and the dose to 20 cc of parotids were higher by an average of 3% (ranged -0.2 to -5.9%) and 4% (ranged -0.2 to -8%), respectively, with XVMC calculation. For the optic apparatus, results from both algorithms were similar. However, the mean dose to skin was 3% higher (ranged 0 to -6%), on average, with XVMC compared to PB-hete, although the maximum dose to skin was 2% lower (ranged -5% to 15.5%). The results from our XVMC dose calculations for head and neck SRT patients indicate small to moderate underdosing of the tumor volume when compared to PB-hete calculation. However, Vp was up to 7.8% less for the lower-neck patient with XVMC. Critical structures, such as spinal cord, brainstem, or parotids, could potentially receive higher doses when using XVMC algorithm. Given the proximity to critical structures and the smaller volumes treated with SRT in the region of the head and neck, the differences between XVMC and PB-hete calculation methods may be of clinical interest. PACS number(s): 87.55.K.The purpose of this study was to generate Monte Carlo computed dose distributions with the X‐ray voxel Monte Carlo (XVMC) algorithm in the treatment of head and neck cancer patients using stereotactic radiotherapy (SRT) and compare to heterogeneity corrected pencil‐beam (PB‐hete) algorithm. This study includes 10 head and neck cancer patients who underwent SRT re‐irradiation using heterogeneity corrected pencil‐beam (PB‐hete) algorithm for dose calculation. Prescription dose was 24‐40 Gy in 3‐5 fractions (treated 3‐5 fractions per week) with at least 95% of the PTV volume receiving 100% of the prescription dose. A stereotactic head and neck localization box was attached to the base of the thermoplastic mask fixation for target localization. The gross tumor volume (GTV) and organs‐at‐risk (OARs) were contoured on the 3D CT images. The planning target volume (PTV) was generated from the GTV with 0 to 5 mm uniform expansion; PTV ranged from 10.2 to 64.3 cc (average=35.0±17.5 cc). OARs were contoured on the 3D planning CT and consisted of spinal cord, brainstem, optic structures, parotids, and skin. In the BrainLab treatment planning system (TPS), clinically optimal SRT plans were generated using hybrid planning technique (combination of 3D conformal noncoplanar arcs and nonopposing static beams) for the Novalis‐Tx linear accelerator consisting of high‐definition multileaf collimators (HD‐MLCs: 2.5 mm leaf width at isocenter) and 6 MV‐SRS (1000 MU/min) beam. For the purposes of this study, treatment plans were recomputed using XVMC algorithm utilizing identical beam geometry, multileaf positions, and monitor units and compared to the corresponding clinical PB‐hete plans. The Monte Carlo calculated dose distributions show small decreases (<1.5%) in calculated dose for D99,Dmean, and Dmax of the PTV coverage between the two algorithms. However, the average target volume encompassed by the prescribed percent dose (Vp) was about 2.5% less with XVMC vs. PB‐hete and ranged between ‐0.1 and 7.8%. The averages for D100 and D10 of the GTV were lower by about 2% and ranged between ‐0.8 and 3.1%. For the spinal cord, both the maximal dose difference and the dose to 0.35 cc of the structure were higher by an average of 4.2% (ranged 1.2 to −13.6%) and 1.4% (ranged 7.5 to −11.3%), respectively, with XVMC calculation. For the brainstem, the maximal dose differences and the dose to 0.5 cc of the structure were, on average, higher by 2.4% (ranged 6.4 to −8.0%) and 3.6% (ranged 6.4 to −9.0%), respectively. For the parotids, both the mean dose and the dose to 20 cc of parotids were higher by an average of 3% (ranged ‐0.2 to −5.9%) and 4% (ranged ‐0.2 to ‐8%), respectively, with XVMC calculation. For the optic apparatus, results from both algorithms were similar. However, the mean dose to skin was 3% higher (ranged 0 to ‐6%), on average, with XVMC compared to PB‐hete, although the maximum dose to skin was 2% lower (ranged −5% to 15.5%). The results from our XVMC dose calculations for head and neck SRT patients indicate small to moderate underdosing of the tumor volume when compared to PB‐hete calculation. However, Vp was up to 7.8% less for the lower‐neck patient with XVMC. Critical structures, such as spinal cord, brainstem, or parotids, could potentially receive higher doses when using XVMC algorithm. Given the proximity to critical structures and the smaller volumes treated with SRT in the region of the head and neck, the differences between XVMC and PB‐hete calculation methods may be of clinical interest. PACS number(s): 87.55.K‐


Journal of Applied Clinical Medical Physics | 2018

Dosimetric assessment of an air‐filled balloon applicator in HDR vaginal cuff brachytherapy using the Monte Carlo method

H. Jiang; R.K. Badkul; D. Pokhrel

Abstract Purpose As an alternative to cylindrical applicators, air‐inflated balloon applicators have been introduced into high‐dose‐rate (HDR) vaginal cuff brachytherapy to achieve sufficient dose to the vagina mucosa as well as to spare organs at risk, mainly the rectum and bladder. Commercial treatment planning systems which employ formulae in the AAPM Task Group No. 43 (TG 43) report do not take into account tissue inhomogeneity. Consequently, the low‐density air in a balloon applicator induces different doses delivered to the mucosa from planned by these planning systems. In this study, we investigated the dosimetric effects of the air in a balloon applicator using the Monte Carlo (MC) method. Methods The thirteen‐catheter Capri™ applicator by Varian™ for vaginal cuff brachytherapy was modeled together with the Ir‐192 radioactive source for the microSelectron™ Digital (HDR‐V3) afterloader by Elekta™ using the MCNP MC code. The validity of charged particle equilibrium (CPE) with an air balloon present was evaluated by comparing the kerma and the absorbed dose at various distances from the applicator surface. By comparing MC results with and without air cavity present, dosimetric effects of the air cavity were studied. Clinical patient cases with optimized multiple Ir‐192 source dwell positions were also explored. Four treatment plans by the Oncentra Brachy™ treatment planning system were re‐calculated with MCNP. Results CPE fails in the vicinity of the air‐water interface. One millimeter beyond the air‐water boundary the kerma and the absorbed dose are equal (0.2% difference), regardless of air cavity dimensions or iridium source locations in the balloon. The air cavity results in dose increase, due to less photon absorption in the air than in water or solid materials. The extent of the increase depends on the diameter of the air balloon. The average increment is 3.8%, 4.5% and 5.3% for 3.0, 3.5, and 4.0 cm applicators, respectively. In patient cases, the dose to the mucosa is also increased with the air cavity present. The point dose difference between Oncentra Brachy and MC at 5 mm prescription depth is 8% at most and 5% on average. Conclusions Except in the vicinity of the air‐mucosa interface, the dosimetric difference is not significant enough to mandate tissue inhomogeneity correction in HDR treatment planning.

Collaboration


Dive into the D. Pokhrel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Jiang

University of Kansas

View shared research outputs
Top Co-Authors

Avatar

F. Wang

University of Kansas

View shared research outputs
Top Co-Authors

Avatar

P. Kumar

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H Saleh

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C Estes

University of Kansas

View shared research outputs
Researchain Logo
Decentralizing Knowledge