Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher M. Rouleau is active.

Publication


Featured researches published by Christopher M. Rouleau.


Nature | 2005

Strong polarization enhancement in asymmetric three-component ferroelectric superlattices

Ho Nyung Lee; Hans M. Christen; Matthew F. Chisholm; Christopher M. Rouleau; Douglas H. Lowndes

Theoretical predictions—motivated by recent advances in epitaxial engineering—indicate a wealth of complex behaviour arising in superlattices of perovskite-type metal oxides. These include the enhancement of polarization by strain and the possibility of asymmetric properties in three-component superlattices. Here we fabricate superlattices consisting of barium titanate (BaTiO3), strontium titanate (SrTiO3) and calcium titanate (CaTiO3) with atomic-scale control by high-pressure pulsed laser deposition on conducting, atomically flat strontium ruthenate (SrRuO3) layers. The strain in BaTiO3 layers is fully maintained as long as the BaTiO3 thickness does not exceed the combined thicknesses of the CaTiO3 and SrTiO3 layers. By preserving full strain and combining heterointerfacial couplings, we find an overall 50% enhancement of the superlattice global polarization with respect to similarly grown pure BaTiO3, despite the fact that half the layers in the superlattice are nominally non-ferroelectric. We further show that even superlattices containing only single-unit-cell layers of BaTiO3 in a paraelectric matrix remain ferroelectric. Our data reveal that the specific interface structure and local asymmetries play an unexpected role in the polarization enhancement.


Journal of the American Chemical Society | 2015

Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions

Bin Yang; Ondrej Dyck; Jonathan D. Poplawsky; Jong Keum; Alexander A. Puretzky; Sanjib Das; Ilia N. Ivanov; Christopher M. Rouleau; Gerd Duscher; David B. Geohegan; Kai Xiao

Imperfections in organometal halide perovskite films such as grain boundaries (GBs), defects, and traps detrimentally cause significant nonradiative recombination energy loss and decreased power conversion efficiency (PCE) in solar cells. Here, a simple layer-by-layer fabrication process based on air exposure followed by thermal annealing is reported to grow perovskite films with large, single-crystal grains and vertically oriented GBs. The hole-transport medium Spiro-OMeTAD is then infiltrated into the GBs to form vertically aligned bulk heterojunctions. Due to the space-charge regions in the vicinity of GBs, the nonradiative recombination in GBs is significantly suppressed. The GBs become active carrier collection channels. Thus, the internal quantum efficiencies of the devices approach 100% in the visible spectrum range. The optimized cells yield an average PCE of 16.3 ± 0.9%, comparable to the best solution-processed perovskite devices, establishing them as important alternatives to growing ideal single crystal thin films in the pursuit toward theoretical maximum PCE with industrially realistic processing techniques.


Acta Biomaterialia | 2010

Functionally graded hydroxyapatite coatings doped with antibacterial components.

Xiao Bai; Karren L. More; Christopher M. Rouleau; Afsaneh Rabiei

A series of functionally graded hydroxyapatite (FGHA) coatings incorporated with various percentages of silver were deposited on titanium substrates using ion beam-assisted deposition. The analysis of the coatings cross-section using transmission electron microscopy (TEM) and scanning transmission electron microscopy equipped with energy dispersive X-ray spectroscopy has shown a decreased crystallinity as well as a distribution of nanoscale (10-50nm) silver particles from the coating/substrate interface to top surface. Both X-ray diffraction and fast Fourier transforms on high-resolution TEM images revealed the presence of hydroxyapatite within the coatings. The amount of Ag (wt.%) on the outer surface of the FGHA, as determined from X-ray photoelectron spectroscopy, ranged from 1.09 to 6.59, which was about half of the average Ag wt.% incorporated in the entire coating. Average adhesion strengths evaluated by pull-off tests were in the range of 83+/-6 to 88+/-3MPa, which is comparable to 85MPa for FGHA without silver. Further optical observations of failed areas illustrated that the dominant failure mechanism was epoxy failure, and FGHA coating delamination was not observed.


Scientific Reports | 2015

Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse

Xufan Li; Ming-Wei Lin; Alexander A. Puretzky; Juan Carlos Idrobo; Cheng Ma; Miaofang Chi; Mina Yoon; Christopher M. Rouleau; Ivan I. Kravchenko; David B. Geohegan; Kai Xiao

Compared with their bulk counterparts, atomically thin two-dimensional (2D) crystals exhibit new physical properties, and have the potential to enable next-generation electronic and optoelectronic devices. However, controlled synthesis of large uniform monolayer and multi-layer 2D crystals is still challenging. Here, we report the controlled synthesis of 2D GaSe crystals on SiO2/Si substrates using a vapor phase deposition method. For the first time, uniform, large (up to ~60 μm in lateral size), single-crystalline, triangular monolayer GaSe crystals were obtained and their structure and orientation were characterized from atomic scale to micrometer scale. The size, density, shape, thickness, and uniformity of the 2D GaSe crystals were shown to be controllable by growth duration, growth region, growth temperature, and argon carrier gas flow rate. The theoretical modeling of the electronic structure and Raman spectroscopy demonstrate a direct-to-indirect bandgap transition and progressive confinement-induced bandgap shifts for 2D GaSe crystals. The 2D GaSe crystals show p-type semiconductor characteristics and high photoresponsivity (~1.7 A/W under white light illumination) comparable to exfoliated GaSe nanosheets. These 2D GaSe crystals are potentially useful for next-generation electronic and optoelectronic devices such as photodetectors and field-effect transistors.


Advanced Materials | 2011

PS‐b‐P3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics

Zhenzhong Sun; Kai Xiao; Jong Kahk Keum; Xiang Yu; Kunlun Hong; Jim Browning; Ilia N. Ivanov; Jihua Chen; Jose Alonzo; Dawen Li; Bobby G. Sumpter; E. A. Payzant; Christopher M. Rouleau; David B. Geohegan

A conducting diblock copolymer of PS-b-P3HT was added to serve as a compatibilizer in a P3HT/PCBM blend, which improved the power-conversion efficiency from 3.3% to 4.1% due to the enhanced crystallinity, morphology, interface interaction, and depth profile of PCBM.


Nature Communications | 2015

Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors

Masoud Mahjouri-Samani; Ming-Wei Lin; Kai Wang; Andrew R. Lupini; Jaekwang Lee; Leonardo Basile; Abdelaziz Boulesbaa; Christopher M. Rouleau; Alexander A. Puretzky; Ilia N. Ivanov; Kai Xiao; Mina Yoon; David B. Geohegan

The formation of semiconductor heterojunctions and their high-density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional crystalline semiconductors as building blocks in next-generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate an approach for the formation of lithographically patterned arrays of lateral semiconducting heterojunctions within a single two-dimensional crystal. Electron beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser vaporization of sulfur to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are studied by Raman and photoluminescence spectroscopy, atomically resolved scanning transmission electron microscopy and device characterization. This demonstration of lateral heterojunction arrays within a monolayer crystal is an essential step for the integration of two-dimensional semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin devices.


Electrochemical and Solid State Letters | 2004

Surface/Interface-Related Conductivity in Nanometer Thick YSZ Films

Igor Kosacki; Christopher M. Rouleau; Paul F. Becher; J. Bentley; Douglas H. Lowndes

Results of the electrical conductivity study of highly textured, ultrathin (15 nm) cubic yttria-stabilized zirconia (YSZ) thin films are presented for the first time. A nanoscale effect that results in exceptionally high ionic conductivity at moderate temperatures is detected in films less than 60 nm thick. The conductivity increases continuously below this level and reaches 0.6 S/cm at 800°C for a 15 nm thick film, which represents the highest reported value for the YSZ system. The observed behavior is attributed to an increasingly significant contribution of the surface/interface conductivity with decreasing film thickness. These observations can have important implications for the development of nanostructured electrochemical devices with enhanced performance.


Science Advances | 2016

Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy

Xufan Li; Ming-Wei Lin; Junhao Lin; Bing Huang; Alexander A. Puretzky; Cheng Ma; Kai Wang; Wu Zhou; Sokrates T. Pantelides; Miaofang Chi; Ivan I. Kravchenko; Jason D. Fowlkes; Christopher M. Rouleau; David B. Geohegan; Kai Xiao

Synthesized two-dimensional GaSe/MoSe2 misfit heterostructures form p-n junctions with a gate-tunable photovoltaic response. Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.


Small | 2011

Antioxidant Deactivation on Graphenic Nanocarbon Surfaces

Xinyuan Liu; Sujat Sen; Jingyu Liu; Indrek Külaots; David B. Geohegan; Agnes B. Kane; Alexander A. Puretzky; Christopher M. Rouleau; Karren L. More; G. Tayhas R. Palmore; Robert H. Hurt

This article reports a direct chemical pathway for antioxidant deactivation on the surfaces of carbon nanomaterials. In the absence of cells, carbon nanotubes are shown to deplete the key physiological antioxidant glutathione (GSH) in a reaction involving dissolved dioxygen that yields the oxidized dimer, GSSG, as the primary product. In both chemical and electrochemical experiments, oxygen is only consumed at a significant steady-state rate in the presence of both nanotubes and GSH. GSH deactivation occurs for single- and multi-walled nanotubes, graphene oxide, nanohorns, and carbon black at varying rates that are characteristic of the material. The GSH depletion rates can be partially unified by surface area normalization, are accelerated by nitrogen doping, and suppressed by defect annealing or addition of proteins or surfactants. It is proposed that dioxygen reacts with active sites on graphenic carbon surfaces to produce surface-bound oxygen intermediates that react heterogeneously with glutathione to restore the carbon surface and complete a catalytic cycle. The direct catalytic reaction between nanomaterial surfaces and antioxidants may contribute to oxidative stress pathways in nanotoxicity, and the dependence on surface area and structural defects suggest strategies for safe material design.


Physica C-superconductivity and Its Applications | 2001

Superconducting magnesium diboride films with Tc≈24 K grown by pulsed laser deposition with in situ anneal

H. M. Christen; H. Y. Zhai; Claudia Cantoni; M. Paranthaman; B. C. Sales; Christopher M. Rouleau; David P. Norton; D. K. Christen; Douglas H. Lowndes

Abstract Thin superconducting films of magnesium diboride (MgB 2 ) with T c ≈24 K were prepared on various oxide substrates by pulsed laser deposition followed by an in situ anneal. A systematic study of the influence of various in situ annealing parameters shows an optimum temperature of about 600°C in a background of 0.7 atm of Ar/4%H 2 for layers consisting of a mixture of magnesium and boron. Contrary to ex situ approaches (e.g. reacting boron films with magnesium vapor at ≈900°C), these films are processed at a temperature at which MgB 2 does not decompose rapidly even in vacuum. This may prove enabling in the formation of multilayers, junctions, and epitaxial films in future work. Issues related to the improvement of these films and to the possible in situ growth of MgB 2 at elevated temperature are discussed.

Collaboration


Dive into the Christopher M. Rouleau's collaboration.

Top Co-Authors

Avatar

David B. Geohegan

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alexander A. Puretzky

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kai Xiao

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gyula Eres

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Douglas H. Lowndes

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gerd Duscher

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Ilia N. Ivanov

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Wang

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Mina Yoon

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge