Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher M. Spillmann is active.

Publication


Featured researches published by Christopher M. Spillmann.


Chemical Reviews | 2017

Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications

Niko Hildebrandt; Christopher M. Spillmann; W. Russ Algar; Thomas Pons; Michael H. Stewart; Eunkeu Oh; Kimihiro Susumu; Sebastián A. Díaz; James B. Delehanty; Igor L. Medintz

Luminescent semiconductor quantum dots (QDs) are one of the more popular nanomaterials currently utilized within biological applications. However, what is not widely appreciated is their growing role as versatile energy transfer (ET) donors and acceptors within a similar biological context. The progress made on integrating QDs and ET in biological configurations and applications is reviewed in detail here. The goal is to provide the reader with (1) an appreciation for what QDs are capable of in this context, (2) how this field has grown over a relatively short time span, and, in particular, (3) how QDs are steadily revolutionizing the development of new biosensors along with a myriad of other photonically active nanomaterial-based bioconjugates. An initial discussion of QD materials along with key concepts surrounding their preparation and bioconjugation is provided given the defining role these aspects play in the QDs ability to succeed in subsequent ET applications. The discussion is then divided around the specific roles that QDs provide as either Förster resonance energy transfer (FRET) or charge/electron transfer donor and/or acceptor. For each QD-ET mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining their biosensing and related ET utility. Other configurations such as incorporation of QDs into multistep ET processes or use of initial chemical and bioluminescent excitation are treated similarly. ET processes that are still not fully understood such as QD interactions with gold and other metal nanoparticles along with carbon allotropes are also covered. Given their maturity, some specific applications ranging from in vitro sensing assays to cellular imaging are separated and discussed in more detail. Finally a perspective on how this field will continue to evolve is provided.


ACS Nano | 2013

Selecting Improved Peptidyl Motifs for Cytosolic Delivery of Disparate Protein and Nanoparticle Materials

Kelly Boeneman; James B. Delehanty; Juan B. Blanco-Canosa; Kimihiro Susumu; Michael H. Stewart; Eunkeu Oh; Alan L. Huston; Glyn Dawson; Sampat Ingale; Ryan Walters; Miriam S. Domowicz; Jeffrey R. Deschamps; W. Russ Algar; Stassi DiMaggio; Janet Manono; Christopher M. Spillmann; Darren A. Thompson; Travis L. Jennings; Philip E. Dawson; Igor L. Medintz

Cell penetrating peptides facilitate efficient intracellular uptake of diverse materials ranging from small contrast agents to larger proteins and nanoparticles. However, a significant impediment remains in the subsequent compartmentalization/endosomal sequestration of most of these cargoes. Previous functional screening suggested that a modular peptide originally designed to deliver palmitoyl-protein thioesterase inhibitors to neurons could mediate endosomal escape in cultured cells. Here, we detail properties relevant to this peptides ability to mediate cytosolic delivery of quantum dots (QDs) to a wide range of cell-types, brain tissue culture and a developing chick embryo in a remarkably nontoxic manner. The peptide further facilitated efficient endosomal escape of large proteins, dendrimers and other nanoparticle materials. We undertook an iterative structure-activity relationship analysis of the peptide by discretely modifying key components including length, charge, fatty acid content and their order using a comparative, semiquantitative assay. This approach allowed us to define the key motifs required for endosomal escape, to select more efficient escape sequences, along with unexpectedly identifying a sequence modified by one methylene group that specifically targeted QDs to cellular membranes. We interpret our results within a model of peptide function and highlight implications for in vivo labeling and nanoparticle-mediated drug delivery by using different peptides to co-deliver cargoes to cells and engage in multifunctional labeling.


Nature Communications | 2014

Assembling programmable FRET-based photonic networks using designer DNA scaffolds

Susan Buckhout-White; Christopher M. Spillmann; W. Russ Algar; Ani Khachatrian; Joseph S. Melinger; Ellen R. Goldman; Mario G. Ancona; Igor L. Medintz

DNA demonstrates a remarkable capacity for creating designer nanostructures and devices. A growing number of these structures utilize Förster resonance energy transfer (FRET) as part of the devices functionality, readout or characterization, and, as device sophistication increases so do the concomitant FRET requirements. Here we create multi-dye FRET cascades and assess how well DNA can marshal organic dyes into nanoantennae that focus excitonic energy. We evaluate 36 increasingly complex designs including linear, bifurcated, Holliday junction, 8-arm star and dendrimers involving up to five different dyes engaging in four-consecutive FRET steps, while systematically varying fluorophore spacing by Förster distance (R0). Decreasing R0 while augmenting cross-sectional collection area with multiple donors significantly increases terminal exciton delivery efficiency within dendrimers compared with the first linear constructs. Förster modelling confirms that best results are obtained when there are multiple interacting FRET pathways rather than independent channels by which excitons travel from initial donor(s) to final acceptor.


Applied Physics Letters | 2007

Anisotropic actuation in electroclinic liquid crystal elastomers

Christopher M. Spillmann; Banahalli R. Ratna; Jawad Naciri

The macroscopic mechanical response of a freestanding, electroclinic liquid crystal elastomer to an applied electric field is described. Contraction strains and shearing were observed upon e-field application when 60-μm-thick elastomer films were tested normal and parallel to smectic layers, respectively. The anisotropic response observed in the two orthogonal directions with respect to the smectic layers correlate calculated from mechanical studies with the induced tilt of the molecules. The electrostrictive and electroclinic coefficients agree well with the values calculated from optical tilt angle measurements.


ACS Nano | 2013

Achieving Effective Terminal Exciton Delivery in Quantum Dot Antenna-Sensitized Multistep DNA Photonic Wires

Christopher M. Spillmann; Mario G. Ancona; Susan Buckhout-White; W. Russ Algar; Michael H. Stewart; Kimihiro Susumu; Alan L. Huston; Ellen R. Goldman; Igor L. Medintz

Assembling DNA-based photonic wires around semiconductor quantum dots (QDs) creates optically active hybrid architectures that exploit the unique properties of both components. DNA hybridization allows positioning of multiple, carefully arranged fluorophores that can engage in sequential energy transfer steps while the QDs provide a superior energy harvesting antenna capacity that drives a Förster resonance energy transfer (FRET) cascade through the structures. Although the first generation of these composites demonstrated four-sequential energy transfer steps across a distance >150 Å, the exciton transfer efficiency reaching the final, terminal dye was estimated to be only ~0.7% with no concomitant sensitized emission observed. Had the terminal Cy7 dye utilized in that construct provided a sensitized emission, we estimate that this would have equated to an overall end-to-end ET efficiency of ≤ 0.1%. In this report, we demonstrate that overall energy flow through a second generation hybrid architecture can be significantly improved by reengineering four key aspects of the composite structure: (1) making the initial DNA modification chemistry smaller and more facile to implement, (2) optimizing donor-acceptor dye pairings, (3) varying donor-acceptor dye spacing as a function of the Förster distance R0, and (4) increasing the number of DNA wires displayed around each central QD donor. These cumulative changes lead to a 2 orders of magnitude improvement in the exciton transfer efficiency to the final terminal dye in comparison to the first-generation construct. The overall end-to-end efficiency through the optimized, five-fluorophore/four-step cascaded energy transfer system now approaches 10%. The results are analyzed using Förster theory with various sources of randomness accounted for by averaging over ensembles of modeled constructs. Fits to the spectra suggest near-ideal behavior when the photonic wires have two sequential acceptor dyes (Cy3 and Cy3.5) and exciton transfer efficiencies approaching 100% are seen when the dye spacings are 0.5 × R0. However, as additional dyes are included in each wire, strong nonidealities appear that are suspected to arise predominantly from the poor photophysical performance of the last two acceptor dyes (Cy5 and Cy5.5). The results are discussed in the context of improving exciton transfer efficiency along photonic wires and the contributions these architectures can make to understanding multistep FRET processes.


ACS Nano | 2014

Multifunctional Liquid Crystal Nanoparticles for Intracellular Fluorescent Imaging and Drug Delivery

Christopher M. Spillmann; Jawad Naciri; W. Russ Algar; Igor L. Medintz; James B. Delehanty

A continuing goal of nanoparticle (NP)-mediated drug delivery (NMDD) is the simultaneous improvement of drug efficacy coupled with tracking of the intracellular fate of the nanoparticle delivery vehicle and its drug cargo. Here, we present a robust multifunctional liquid crystal NP (LCNP)-based delivery system that affords facile intracellular fate tracking coupled with the efficient delivery and modulation of the anticancer therapeutic doxorubicin (Dox), employed here as a model drug cargo. The LCNPs consist of (1) a liquid crystal cross-linking agent, (2) a homologue of the organic chromophore perylene, and (3) a polymerizable surfactant containing a carboxylate headgroup. The NP core provides an environment to both incorporate fluorescent dye for spectrally tuned particle tracking and encapsulation of amphiphilic and/or hydrophobic agents for intracellular delivery. The carboxylate head groups enable conjugation to biologicals to facilitate the cellular uptake of the particles. Upon functionalization of the NPs with transferrin, we show the ability to differentially label the recycling endocytic pathway in HEK 293T/17 cells in a time-resolved manner with minimal cytotoxicity and with superior dye photostability compared to traditional organic fluorophores. Further, when passively loaded with Dox, the NPs mediate the rapid uptake and subsequent sustained release of Dox from within endocytic vesicles. We demonstrate the ability of the LCNPs to simultaneously serve as both an efficient delivery vehicle for Dox as well as a modulator of the drugs cytotoxicity. Specifically, the delivery of Dox as a LCNP conjugate results in a ∼40-fold improvement in its IC50 compared to free Dox in solution. Cumulatively, our results demonstrate the utility of the LCNPs as an effective nanomaterial for simultaneous cellular imaging, tracking, and delivery of drug cargos.


Langmuir | 2012

Barnacle Balanus amphitrite adheres by a stepwise cementing process.

Daniel K. Burden; Daniel E. Barlow; Christopher M. Spillmann; Beatriz Orihuela; Dan Rittschof; Richard K. Everett; Kathryn J. Wahl

Barnacles adhere permanently to surfaces by secreting and curing a thin interfacial adhesive underwater. Here, we show that the acorn barnacle Balanus amphitrite adheres by a two-step fluid secretion process, both contributing to adhesion. We found that, as barnacles grow, the first barnacle cement secretion (BCS1) is released at the periphery of the expanding base plate. Subsequently, a second, autofluorescent fluid (BCS2) is released. We show that secretion of BCS2 into the interface results, on average, in a 2-fold increase in adhesive strength over adhesion by BCS1 alone. The two secretions are distinguishable both spatially and temporally, and differ in morphology, protein conformation, and chemical functionality. The short time window for BCS2 secretion relative to the overall area increase demonstrates that it has a disproportionate, surprisingly powerful, impact on adhesion. The dramatic change in adhesion occurs without measurable changes in interface thickness and total protein content. A fracture mechanics analysis suggests the interfacial materials modulus or work of adhesion, or both, were substantially increased after BCS2 secretion. Addition of BCS2 into the interface generates highly networked amyloid-like fibrils and enhanced phenolic content. Both intertwined fibers and phenolic chemistries may contribute to mechanical stability of the interface through physically or chemically anchoring interface proteins to the substrate and intermolecular interactions. Our experiments point to the need to reexamine the role of phenolic components in barnacle adhesion, long discounted despite their prevalence in structural membranes of arthropods and crustaceans, as they may contribute to chemical processes that strengthen adhesion through intermolecular cross-linking.


Liquid Crystals | 2006

Tuning the physical properties of a nematic liquid crystal elastomer actuator

Christopher M. Spillmann; Jawad Naciri; Mu-San Chen; Amritha Srinivasan; Banahalli R. Ratna

In this report we demonstrate the ability to tune the physical properties of a liquid crystal elastomer (LCE) by varying the amount and type of crosslinking within the elastomer network. LCE films composed of a single mesogenic compound were capable of uniaxial contraction when thermally actuated through the nematic to isotropic phase of the material. We probed the physical properties of the LCE films while varying the amount and concentration of two crosslinking agents and measured actuation strains of 10–35%, elastic moduli of 3–14 MPa, and transition temperatures ranging between 75 and 60°C. The viscous losses of the elastomers and the estimated work capable of being produced by the films were also evaluated. The ability to tune the physical properties of the LCE films allows for a wide range of applications including robotics, microelectromechanical systems (MEMS), shape‐changing membranes, and/or microfluidics.


Soft Matter | 2012

Hydrodynamically directed multiscale assembly of shaped polymer fibers

Adam R. Shields; Christopher M. Spillmann; Jawad Naciri; Peter B. Howell; Abel L. Thangawng; Frances S. Ligler

A long-sought goal of material science is the development of fabrication processes by which synthetic materials can be made to mimic the multiscale organization many natural materials utilize to achieve unique functional and material properties. Here we demonstrate how the microfluidic fabrication of polymer fibers can take advantage of hydrodynamic forces to simultaneously direct assembly at the molecular and micron scales. The microfluidic device generates long fibers by initiating polymerization of a continuously flowing fluid via UV irradiation within the microfluidic channel. Prior to polymerization, hydrodynamic shear forces direct molecular scale assembly and a combination of hydrodynamic focusing and advection driven by grooves in the channel walls manipulate the cross-sectional shape of the pre-polymer stream. Polymerization subsequently locks in both molecular scale alignment and micron-scale fiber shape. This simple method for generating structures with multiscale organization could be useful for fabricating materials with multifunctionality or enhanced mechanical properties.


Biofouling | 2014

Growth and development of the barnacle Amphibalanus amphitrite: time and spatially resolved structure and chemistry of the base plate

Daniel K. Burden; Christopher M. Spillmann; Richard K. Everett; Daniel E. Barlow; Beatriz Orihuela; Jeffrey R. Deschamps; Kenan P. Fears; Dan Rittschof; Kathryn J. Wahl

The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface development in the striped barnacle, Amphibalanus (= Balanus) amphitrite were resolved in situ and include advancement of the barnacle/substratum interface, epicuticle membrane development, protein secretion, and calcification. Microscopic and spectroscopic techniques provide ex situ material identification of regions imaged by confocal microscopy. In situ and ex situ analysis of the interface support the hypothesis that barnacle interface development is a complex process coupling sequential, timed secretory events and morphological changes. This results in a multi-layered interface that concomitantly fulfills the roles of strongly adhering to a substratum while permitting continuous molting and radial growth at the periphery.

Collaboration


Dive into the Christopher M. Spillmann's collaboration.

Top Co-Authors

Avatar

Jawad Naciri

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Banahalli R. Ratna

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar

Igor L. Medintz

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ellen R. Goldman

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kathryn J. Wahl

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mario G. Ancona

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James B. Delehanty

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Russ Algar

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge