Christopher P. Burridge
University of Tasmania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher P. Burridge.
Evolution | 2006
Christopher P. Burridge; D. Craw; Jonathan M. Waters
Abstract River capture is potentially a key geomorphological driver of range expansion and cladogenesis in freshwater‐limited taxa. While previous studies of freshwater fish, in particular, have indicated strong relationships between historical river connections and phylogeographic pattern, their analyses have been restricted to single taxa and geological hypotheses were typically constructed a posteriori. Here we assess the broader significance of river capture among taxa by testing multiple species for the genetic signature of a recent river capture event in New Zealand. During the Quaternary an upper tributary of the Clarence River system was diverted into the headwaters of the Wairau River catchment. Mitochondrial DNA (control region and cytochrome b) sequencing of two native galaxiid fishes (Galaxias vulgaris and Galaxias divergens) supports headwater exchange: populations from the Clarence and Wairau Rivers are closely related sister‐groups, whereas samples from the geographically intermediate Awatere River are genetically divergent. The upland bully Gobiomorphus breviceps (Eleotridae), in contrast, lacks a genetic signature of the capture event. We hypothesize that there is an increased likelihood of observing genetic signatures from river capture events when they facilitate range expansion, as is inferred for the two galaxiid taxa studied here. When river capture merely translocates genetic lineages among established populations, by contrast, we suggest that the genetic signature of capture is less likely to be retained, as might be inferred for G. breviceps. Rates of molecular evolution calibrated against this recent event were elevated relative to traditional estimates, consistent with the contribution of polymorphisms to branch lengths at shallow phylogenetic levels prior to fixation by purifying selection and drift.
Molecular Ecology | 2007
Christopher P. Burridge; Dave Craw; Jonathan M. Waters
River capture is a geomorphological process through which stream sections are displaced from one catchment to another, and it may represent a dominant facilitator of interdrainage transfer and cladogenesis in freshwater‐limited taxa. However, few studies have been conducted in a manner to explicitly test the biological significance of river capture. Here we present a multispecies phylogeographical analysis to test whether the nonmigratory fish fauna of the Von River (South Island, New Zealand) is the product of a well‐documented, Late Quaternary capture of a section of the Oreti River (Southland drainage). Specifically, we predict that nonmigratory fishes of the Von River will exhibit closer genetic affinities with those of Southland, rather than those of the Clutha system, into which the Von River presently drains. Mitochondrial DNA phylogeography (control region and cytochrome b sequence data) and analysis of nuclear orthologues of mtDNA sequences indicate that ‘flathead’Galaxias of the Von River (n = 31, three sites) have greatest genetic affinities with those of Southland (Galaxias ‘southern’, n = 216, 38 sites), rather than with those of the Clutha River (Galaxias sp. ‘D’, n = 73, 32 sites). Likewise, Von River ‘roundhead’Galaxias (n = 52, four sites) have greatest genetic affinities with those of Southland drainages (Galaxias gollumoides, n = 223, 58 sites), rather than with those of the Clutha River (Galaxias pullus, Galaxias anomalus, Galaxias gollumoides of the Nevis tributary; n = 68, 32 sites). These findings are consistent with our predictions that genetic affinities of the nonmigratory fish fauna in the Von River would reflect past, rather than present, drainage connections. Consequently, river capture is responsible for the nonmigratory fish fauna of the Von River. In a broader context, river capture has frequently influenced the distribution of genetic lineages among catchments in New Zealand freshwater‐limited fish, and its biogeographical significance may have been underestimated in other regions.
Evolution | 2008
Christopher P. Burridge; Dave Craw; Daniel C. Jack; Tania M. King; Jonathan M. Waters
Abstract Obligate freshwater taxa are frequently distributed among catchments isolated by marine and terrestrial barriers. Such distributions can arise through vicariant changes in drainage geometry, or dispersal via intermittent freshwater connections. We employed two adjacent rivers in southern New Zealand to test for interdrainage dispersal while controlling for historical drainage geometry, and analyzed four ecologically distinct freshwater-limited fish taxa to assess any relationship with habitat preference. Individuals from the Mararoa and Oreti catchments (n >100 per species) were sequenced for a minimum of 1297 bp of mitochondrial DNA (cytochrome b and control region). Phylogeographic relationships were consistent with ecological expectations of interdrainage dispersal capability, with the two obligate riverine taxa each exhibiting reciprocal monophyly between catchments, whereas the two facultative swamp dwellers revealed paraphyletic relationships, one of which shared a haplotype between catchments. Statistical phylogeography, accommodating taxon-specific mutation rates and the known age of the last major riverine connection between these catchments, rejected complete isolation of populations for one of the swamp dwellers. Therefore, dispersal across a young (145–240 kyr) drainage divide is inferred for one species, and can be predicted to some extent by species ecology. Moreover, our study highlights the importance of historical drainage geometry when assessing the causes of contemporary genetic structuring in freshwater taxa.
Molecular Ecology Resources | 2008
Fiona Hogan; Raylene Cooke; Christopher P. Burridge; Janette A Norman
Shed feathers obtained by noninvasive genetic sampling (NGS) are a valuable source of DNA for genetic studies of birds. They can be collected across a large geographical range and facilitate research on species that would otherwise be extremely difficult to study. A limitation of this approach is uncertainty concerning the quality of the extracted DNA. Here we investigate the relationship between feather type, feather condition and DNA quality (amplification success) in order to provide a simple, cost‐effective method for screening samples prior to genetic analysis. We obtained 637 shed feathers of the powerful owl (Ninox strenua) from across its range in southeastern Australia. The extracted DNA was amplified using polymerase chain reaction for a range of markers including mitochondrial DNA, ND3 and nuclear DNA, a simple sequence repeat (Nst02) and a portion of the CHD‐1 gene (P2/P8). We found that feather condition significantly influenced the amplification success of all three loci, with feathers characterized as ‘good’ having greater success. Feather type was found to be of lower importance, with good quality feathers of all types consistently producing high success for all three loci. We also found that the successful amplification of multilocus genotypes was dependant on the condition of the starting material and was highly correlated with successful amplification of the sex‐linked CHD‐1 locus. Samples with low DNA quality have a higher probability of amplification failure and are more likely to produce incorrect genotypes; therefore, identifying samples with high DNA quality can save substantial time and cost associated with the genetic analysis of NGS. As a result, we propose a method for screening shed feathers in order to provide a subset of samples which will have a greater probability of containing high quality DNA suitable for the amplification of multilocus genotypes.
Systematic Biology | 2010
Jonathan M. Waters; Diane L. Rowe; Christopher P. Burridge; Graham P. Wallis
Mechanisms of speciation are best understood in the context of phylogenetic relationships and as such have often been inferred from single gene trees, typically those derived from mitochondrial DNA (mtDNA) markers. Recent studies, however, have noted the potential for phylogenetic discordance between gene trees and underlying species trees (e.g., due to stochastic lineage sorting, introgression, or selection). Here, we employ a variety of nuclear DNA loci to reassess evolutionary relationships within a recent freshwater fish radiation to reappraise modes of speciation. New Zealands freshwater-limited Galaxias vulgaris complex is thought to have evolved from G. brevipinnis, a widespread migratory species that retains a plesiomorphic marine juvenile phase. A well-resolved tree, based on four mtDNA regions, previously suggested that marine migratory ability has been lost on 3 independent occasions in the evolution of this species flock (assuming that loss of diadromy is irreversible). Here, we use pseudogene (galaxiid Numt: 1801 bp), intron (S: 903 bp), and exon (RAG-1: 1427 bp) markers, together with mtDNA, to reevaluate this hypothesis of parallel evolution. Interestingly, partitioned Bayesian analysis of concatenated nuclear sequences (3141 bp) and concatenated nuclear and mtDNA (4770 bp) both recover phylogenies implying a single loss of diadromy, not three parallel losses as previously inferred from mtDNA alone. This phylogenetic result is reinforced by a multilocus analysis performed using Bayesian estimation of species trees (BEST) software that estimates the posterior distribution of species trees under a coalescent model. We discuss factors that might explain the apparently misleading phylogenetic inferences generated by mtDNA.
Environmental Biology of Fishes | 2002
Christopher P. Burridge
Twenty-one molecular genetic studies of thirteen antitropical Pacific fishes are herein reviewed. High dispersal potentials and Plio-Pleistocene transequatorial divergence are suggested for approximately half of the taxa studied, consistent with movement across the tropics during glacial periods. Divergences within two fish groups were mid-Miocene in age, corresponding to a period suggested for vicariant isolation associated with equatorial warming, but high dispersal potentials complicate the interpretation of biogeographic history. Only one study suggested transequatorial divergence older than 20 million years. There is a greater proportion of Pleistocene transequatorial divergences in the East Pacific than the West Pacific, consistent with the suggestion that conditions in the East Pacific are more amenable to the formation of antitropical distributions. Multiple transequatorial divergences have been observed within at least two groups, and instances of cryptic speciation have been identified twice. Areas for future research concern taxa that differ from the majority studied to date with respect to latitudinal distribution, bathymetry, evolutionary age, and dispersal potential. Molecular characters have demonstrated utility for the study of antitropical fishes, but with limitations.
Genetica | 2001
John R. Gold; Christopher P. Burridge; Thomas F. Turner
Genetic studies of population or ‘stock’ structure in exploited marine fishes typically are designed to determine whether geographic boundaries useful for conservation and management planning are identifiable. Implicit in many such studies is the notion that subpopulations or stocks, if they exist, have fixed territories with little or no gene exchange between them. Herein, we review our long-term genetic studies of red drum (Sciaenops ocellatus), an estuarine-dependent sciaenid fish in the Gulf of Mexico and western Atlantic Ocean. Significant differences in frequencies of mitochondrial DNA haplotypes and of alleles at nuclear-encoded microsatellites occur among red drum sampled across the northern Gulf of Mexico. The spatial distribution of the genetic variation, however, follows a pattern of isolation-by-distance consistent with the hypothesis that gene flow occurs among subpopulations and is an inverse (and continuous) function of geographic distance. However, successful reproduction and recruitment of red drum depend on estuarine habitats that have geographically discrete boundaries. We hypothesize that population structure in red drum follows a modified one-dimensional, linear stepping-stone model where gene exchange occurs primarily (but not exclusively) between adjacent bays and estuaries distributed linearly along the coastline. Gene flow does occur among estuaries that are not adjacent but probabilities of gene exchange decrease as a function of geographic distance. Implications of our hypothesis are discussed in terms of inferences drawn from patterns of isolation-by-distance and relative to conservation and management of estuarine-dependent species like red drum. Based on estimates of the ratio of genetic effective population size and census size in red drum, observed patterns of gene flow in red drum may play a significant role in recruitment.
Geology | 2008
Dave Craw; Christopher P. Burridge; Richard J. Norris; Jon Waters
All eukaryote populations accumulate mutations in their mitochondrial DNA (mtDNA) over time, so reproductively isolated populations become characterized by distinct mtDNA lineages. In addition, the degree of genetic differentiation among distinct populations can be used to estimate time elapsed since their isolation. We have identified an informative system for calibrating the mtDNA “clock” by genetically comparing freshwater galaxiid fish populations isolated in different river drainages. Calibration using a range of Quaternary geological events in southern New Zealand shows that the mtDNA divergence rate in galaxiid fishes is between 1% and 2%/100 k.y. up to 250 k.y., with the rate decreasing with increasing age. The estimated divergence rate slows to around 4%/m.y. for the middle Quaternary, although calibration is poor. A calibration curve has been fitted to all data: divergence (%) = −2.2 e −9 t + 2.5 t + 2.2, where t is isolation age (in m.y.). This molecular clock has potential as a dating tool for glacially related and active tectonic events that have caused river drainage changes in the late Quaternary in the Southern Hemisphere, where galaxiids are widespread. An application of this dating tool to an example in northern South Island uses three different species of freshwater-limited fish, and all three data sets imply formation of a drainage divide at 320 ± 110 ka, at about the time of a major glacial advance though the divide (oxygen isotope stage 8).
Molecular Ecology | 2012
Oliver Berry; Phillip R. England; Ross J. Marriott; Christopher P. Burridge; Stephen J. Newman
Many marine species have vastly different capacities for dispersal during larval, juvenile and adult life stages, and this has the potential to complicate the identification of population boundaries and the implementation of effective management strategies such as marine protected areas. Genetic studies of population structure and dispersal rarely disentangle these differences and usually provide only lifetime‐averaged information that can be considered by managers. We address this limitation by combining age‐specific autocorrelation analysis of microsatellite genotypes, hydrodynamic modelling and genetic simulations to reveal changes in the extent of dispersal during the lifetime of a marine fish. We focus on an exploited coral reef species, Lethrinus nebulosus, which has a circum‐tropical distribution and is a key component of a multispecies fishery in northwestern Australia. Conventional population genetic analyses revealed extensive gene flow in this species over vast distances (up to 1500 km). Yet, when realistic adult dispersal behaviours were modelled, they could not account for these observations, implying adult dispersal does not dominate gene flow. Instead, hydrodynamic modelling showed that larval L. nebulosus are likely to be transported hundreds of kilometres, easily accounting for the observed gene flow. Despite the vast scale of larval transport, juvenile L. nebulosus exhibited fine‐scale genetic autocorrelation, which declined with age. This implies both larval cohesion and extremely limited juvenile dispersal prior to maturity. The multidisciplinary approach adopted in this study provides a uniquely comprehensive insight into spatial processes in this marine fish.
Systematic Biology | 2006
Christopher P. Burridge; Meléndez C. Roberto; Brian S. Dyer
Phylogenetic relationships were reconstructed among chironemid fishes based on morphological and molecular (lrRNA, NADH4, S7 ribosomal protein) characters. Two sympatric species from Juan Fernández in the southeast Pacific are not sister taxa, but rather exhibit independent relationships to Australian/New Zealand chironemids. The most plausible explanation for these relationships and contemporary distributions is an Australian/New Zealand origin of the family, followed by two trans-Pacific dispersal and colonization events, facilitated by larval entrapment within the West Wind Drift. This study demonstrates that the diversity of taxa on an island can reflect multiple colonizations, rather than in situ diversification, even in the case of very small, isolated, and geologically recent islands. When taken in conjunction with studies of related taxa, our results indicate that transoceanic dispersal of temperate cirrhitoid fishes in the South Pacific has been frequent and unidirectional. Molecular estimates of divergence time between southeast Pacific chironemids and their western relatives predate the emergence of Juan Fernández, consistent with hypotheses that much of the marine nearshore faunas of young southeast Pacific islands may be the product of successive transfer from older, now submerged islands.