Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher P. Cheng is active.

Publication


Featured researches published by Christopher P. Cheng.


Annals of Biomedical Engineering | 2002

In Vivo Quantification of Blood Flow and Wall Shear Stress in the Human Abdominal Aorta During Lower Limb Exercise

Charles A. Taylor; Christopher P. Cheng; Leandro A. Espinosa; Beverly T. Tang; David Parker; Robert J. Herfkens

AbstractMagnetic resonance (MR) imaging techniques and a custom MR-compatible exercise bicycle were used to measure, in vivo, the effects of exercise on hemodynamic conditions in the abdominal aorta of eleven young, healthy subjects. Heart rate increased from 73±6.2 beats/min at rest to 110±8.8 beats/min during exercise (p < 0.0001). The total blood flow through the abdominal aorta increased from 2.9±0.6 L/min at rest to 7.2±1.4 L/min during exercise (p < 0.0005) while blood flow to the digestive and renal circulations decreased from 2.1±0.5 L/min at rest to 1.6±0.7 L/min during exercise (p < 0.01). Infrarenal blood flow increased from 0.9±0.4 L/min at rest to 5.6±1.1 L/min during exercise (p < 0.0005). Wall shear stress increased in the supraceliac aorta from 3.5±0.8 dyn/cm2 at rest to 6.2±0.5 dyn/cm2 during exercise (p < 0.0005) and increased in the infrarenal aorta from 1.3±0.8 dyn/cm2 at rest to 5.2±1.3 dyn/cm2 during exercise (p < 0.0005).


Journal of Vascular and Interventional Radiology | 2006

In Vivo MR Angiographic Quantification of Axial and Twisting Deformations of the Superficial Femoral Artery Resulting from Maximum Hip and Knee Flexion

Christopher P. Cheng; Nathan M. Wilson; Richard L. Hallett; Robert J. Herfkens; Charles A. Taylor

PURPOSE The goal of this study was to quantify in vivo deformations of the superficial femoral artery (SFA) during maximum knee and hip flexion with use of magnetic resonance (MR) angiography to improve description of the complex, dynamic SFA environment. MATERIALS AND METHODS Contrast medium-enhanced MR angiography was performed on the leg vasculature of eight healthy adults in the supine and fetal positions. The SFA was defined as the centerline path of the iliofemoral segment from the profunda femoris to the descending genicular artery. Deformations that resulted from flexion from the supine position to the fetal position were quantified with the SFA path and its branches. RESULTS Fourteen SFAs shortened from the supine position to fetal position, whereas two lengthened. Six of eight left SFAs twisted counterclockwise, and seven of eight right SFAs twisted clockwise. Straightness percentages for supine and fetal SFAs were 99.1%+/-0.4% and 98.7%+/-0.6%, respectively. From the supine position to the fetal position, the SFA shortened 13%+/-11% (P<.001) and twisted 60 degrees+/-34 degrees (P<.001). SFA arc length and percent shortening were strongly correlated (r>.8) between left and right limbs; however, no significant correlation existed for SFA twist angle. CONCLUSIONS Complex and varying vascular and muscular anatomy among study participants made SFA lengths and deformations from the supine position to the fetal position unpredictable a priori; however, there were strong symmetries between left and right SFAs in terms of arc length, length change, and direction of twist. The data show that, from the supine position to the fetal position, the SFA tended to shorten and twist substantially, suggesting these as possible fracture mechanisms and also providing important parameters for stent design.


Annals of Biomedical Engineering | 2002

Quantification of wall shear stress in large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging.

Christopher P. Cheng; David Parker; Charles A. Taylor

AbstractArterial wall shear stress is hypothesized to be an important factor in the localization of atherosclerosis. Current methods to compute wall shear stress from magnetic resonance imaging (MRI) data do not account for flow profiles characteristic of pulsatile flow in noncircular vessel lumens. We describe a method to quantify wall shear stress in large blood vessels by differentiating velocity interpolation functions defined using cine phase-contrast MRI data on a band of elements in the neighborhood of the vessel wall. Validation was performed with software phantoms and an in vitro flow phantom. At an image resolution corresponding to in vivo imaging data of the human abdominal aorta, time-averaged, spatially averaged wall shear stress for steady and pulsatile flow were determined to be within 16% and 23% of the analytic solution, respectively. These errors were reduced to 5% and 8% with doubling in image resolution. For the pulsatile software phantom, the oscillation in shear stress was predicted to within 5%. The mean absolute error of circumferentially resolved shear stress for the nonaxisymmetric phantom decreased from 28% to 15% with a doubling in image resolution. The irregularly shaped phantom and in vitro investigation demonstrated convergence of the calculated values with increased image resolution. We quantified the shear stress at the supraceliac and infrarenal regions of a human abdominal aorta to be 3.4 and 2.3 dyn/cm2, respectively.


Atherosclerosis | 2003

Abdominal aortic hemodynamic conditions in healthy subjects aged 50-70 at rest and during lower limb exercise: in vivo quantification using MRI.

Christopher P. Cheng; Robert J. Herfkens; Charles A. Taylor

The prevalence of atherosclerosis in the abdominal aorta increases with age and is hypothesized to be related to adverse hemodynamic conditions including flow recirculation and low wall shear stress. Exercise has been shown to modulate these adverse conditions observed in the infrarenal aorta of healthy young subjects at rest. A custom magnetic resonance (MR)-compatible stationary cycle, an open MRI, and custom image processing software were used to quantify hemodynamic conditions in the abdominal aorta at rest and during cycling exercise in healthy subjects aged 50-70 years. The subjects increased their heart rate from 63+/-8 bpm at rest to 95+/-12 bpm during cycling exercise. Supraceliac blood flow increased from 2.3+/-0.4 to 6.0+/-1.4 l/min (P<0.001) and infrarenal flow increased from 0.9+/-0.3 to 4.9+/-1.7 l/min (P<0.001) from rest to exercise. Wall shear stress increased from 2.0+/-0.7 to 7.3+/-2.4 dynes/cm(2) at the supraceliac level (P<0.001) and 1.4+/-0.8 to 16.5+/-5.1 dynes/cm(2) at the infrarenal level (P<0.001) from rest to exercise. Flow and shear oscillations present at rest were eliminated during exercise. At rest, these older subjects experienced lower mean wall shear stress at the supraceliac level of the aorta and greater oscillations in wall shear stress as compared to a group of younger subjects (23.6+/-2.2 years). Compared to the younger subjects, the older subjects also experienced greater increases in mean wall shear stress and greater decreases in wall shear stress oscillations from rest to exercise.


Journal of Vascular and Interventional Radiology | 2010

The Effect of Aging on Deformations of the Superficial Femoral Artery Resulting from Hip and Knee Flexion: Potential Clinical Implications

Christopher P. Cheng; Gilwoo Choi; Robert J. Herfkens; Charles A. Taylor

PURPOSE Vessel deformations have been implicated in endoluminal device fractures, and therefore better understanding of these deformations could be valuable for device regulation, evaluation, and design. The purpose of this study is to describe geometric changes of the superficial femoral artery (SFA) resulting from hip and knee flexion in older subjects. MATERIALS AND METHODS The SFAs of seven healthy subjects aged 50-70 years were imaged with magnetic resonance angiography with the legs straight and with hip and knee flexion. From geometric models constructed from these images, axial, twisting, and bending deformations were quantified. RESULTS There was greater shortening in the bottom third of the SFA than in the top two thirds (top, 5.9% +/- 3.0%; middle, 6.7% +/- 2.1%; bottom, 8.1% +/- 2.0% [mean +/- SD]; P < .05), significant twist in all sections (top, 1.3 degrees /cm +/- 0.8; middle, 1.8 degrees /cm +/- 1.1; bottom, 2.1 degrees /cm +/- 1.3), and greater curvature increase in the bottom third than in the top two thirds (top, 0.15 cm(-1) +/- 0.06; middle, 0.09 cm(-1) +/- 0.07; bottom, 0.41 cm(-1) +/- 0.22; P < .001). CONCLUSIONS The SFA tends to deform more in the bottom third than in the other sections, likely because of less musculoskeletal constraint distal to the adductor canal and vicinity of knee flexion. The SFAs of these older subjects curve off axis with normal joint flexion, probably resulting from known loss of arterial elasticity with age. This slackening of the vessel enables a method for noninvasive quantification of in vivo SFA strain, which may be valuable for treatment planning and device design. In addition, the spatially resolved arterial deformations quantified in this study may be useful for commercial and regulatory device evaluation.


Annals of Biomedical Engineering | 2011

Quantification of Particle Residence Time in Abdominal Aortic Aneurysms Using Magnetic Resonance Imaging and Computational Fluid Dynamics

Ga-Young Suh; Andrea S. Les; Adam S. Tenforde; Shawn C. Shadden; Ryan L. Spilker; Janice J. Yeung; Christopher P. Cheng; Robert J. Herfkens; Ronald L. Dalman; Charles A. Taylor

Hemodynamic conditions are hypothesized to affect the initiation, growth, and rupture of abdominal aortic aneurysms (AAAs), a vascular disease characterized by progressive wall degradation and enlargement of the abdominal aorta. This study aims to use magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to quantify flow stagnation and recirculation in eight AAAs by computing particle residence time (PRT). Specifically, we used gadolinium-enhanced MR angiography to obtain images of the vessel lumens, which were used to generate subject-specific models. We also used phase-contrast MRI to measure blood flow at supraceliac and infrarenal locations to prescribe physiologic boundary conditions. CFD was used to simulate pulsatile flow, and PRT, particle residence index, and particle half-life of PRT in the aneurysms were computed. We observed significant regional differences of PRT in the aneurysms with localized patterns that differed depending on aneurysm geometry and infrarenal flow. A bulbous aneurysm with the lowest mean infrarenal flow demonstrated the slowest particle clearance. In addition, improvements in particle clearance were observed with increase of mean infrarenal flow. We postulate that augmentation of mean infrarenal flow during exercise may reduce chronic flow stasis that may influence mural thrombus burden, degradation of the vessel wall, and aneurysm growth.


Journal of Vascular and Interventional Radiology | 2008

Right Renal Artery In Vivo Stent Fracture

Scott W. Robertson; David B. Jessup; Isabel J. Boero; Christopher P. Cheng

The authors describe an incident of a type I single strut fracture in a right renal artery (RRA) stent resulting in approximately 90% restenosis. Fracture was observed just distal to the ostium approximately 1 year after implantation in an 83-year-old man with a history of systemic cardiovascular disease. In addition, a statistical analysis of the clinically reported cases of left renal artery (LRA) and RRA stent fracture is provided, which suggests a greater susceptibility to fracture in LRA stents as demonstrated by the greater occurrence (67%) in the left side.


Journal of Endovascular Therapy | 2009

In vivo deformation of the human abdominal aorta and common iliac arteries with hip and knee flexion: implications for the design of stent-grafts.

Gilwoo Choi; Lewis K. Shin; Charles A. Taylor; Christopher P. Cheng

Purpose: To quantify in vivo deformations of the abdominal aorta and common iliac arteries (CIAs) caused by musculoskeletal motion. Methods: Seven healthy subjects (age 34±11 years, range 24–50) were imaged in the supine and fetal positions (hip flexion angle 134.0°±9.7°) using contrast-enhanced magnetic resonance angiography. Longitudinal strain, twisting, and curvature change of the infrarenal aorta and CIAs were computed. The angle between the left and right CIAs and translation of the arteries were also computed. Results: Maximal hip flexion induced shortening (5.2%±4.6%), twisting (0.45±0.27 °/mm), and curvature changes (0.015±0.007 mm−1) of the CIAs. The angle between the CIAs increased by 17.6°±8.6°. The iliac arteries moved predominantly in the superior direction relative to the aortic bifurcation, which would induce compression and bending, thus increasing curvature and angle between the CIAs. The abdominal aorta also exhibited shortening (2.9%±2.1%) and twisting (0.07±0.05 °/mm) deformation associated with the hip flexion. Conclusion: Although this study was limited to a few healthy young adults, musculoskeletal motion, specifically hip flexion, caused significant in vivo morphological changes (shortening, twisting, and bending) of the arteries. Predominant superior translation of the CIAs was observed, which suggests that preclinical testing of cyclic superior-inferior translational motion may aid in predicting stent-graft fractures. In turn, stent-graft design could be improved, decreasing overall stent-graft–related complications.


Magnetic Resonance in Medicine | 2003

Dynamic exercise imaging with an MR-compatible stationary cycle within the general electric open magnet.

Christopher P. Cheng; Douglas F. Schwandt; Eric L. Topp; James H. Anderson; Robert J. Herfkens; Charles A. Taylor

Many cases of muscular ischemia do not manifest without increased metabolic demand. Hence, diagnosis of intermittent claudication often requires inducing physiologic challenge, such as by exercise. Cine phase‐contrast MRI can concurrently acquire cross‐sectional vascular anatomy and through‐plane blood velocities, enabling blood flow rate quantification. An MR‐compatible stationary cycle was designed, constructed, and tested for flow quantification in large arteries during lower‐limb exercise in a General Electric Signa SP 0.5 T open magnet. The cycle demonstrated smooth cycling during image acquisition, has freewheeling capability, is adjustable for subject size and strength, and can quantify workload. A healthy 59‐year‐old male was imaged at the supraceliac and infrarenal levels of the abdominal aorta at rest and during exercise. An exercise workload of 47.9 W was achieved. His heart rate increased from 52 to 78 bpm, supraceliac flow increased from 1.7 to 3.7 L/min, and infrarenal flow increased from 0.4 to 3.2 L/min from rest to exercise. Magn Reson Med 49:581–585, 2003.


Journal of Magnetic Resonance Imaging | 2005

Proximal pulmonary artery blood flow characteristics in healthy subjects measured in an upright posture using MRI: The effects of exercise and age†

Christopher P. Cheng; Robert J. Herfkens; Charles A. Taylor; Jeffrey A. Feinstein

To use MRI to quantify blood flow conditions in the proximal pulmonary arteries of healthy children and adults at rest and during exercise in an upright posture.

Collaboration


Dive into the Christopher P. Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge