Christopher P. Rüger
University of Rostock
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher P. Rüger.
Journal of Plant Nutrition and Soil Science | 2015
Jens Kruse; Marion Abraham; Wulf Amelung; Christel Baum; Roland Bol; Oliver Kühn; Hans Lewandowski; Jörg Niederberger; Yvonne Oelmann; Christopher P. Rüger; Jakob Santner; Meike Siebers; Nina Siebers; Marie Spohn; Johan Vestergren; Angela Vogts; Peter Leinweber
Phosphorus (P) is an indispensable element for all life on Earth and, during the past decade, concerns about the future of its global supply have stimulated much research on soil P and method development. This review provides an overview of advanced state-of-the-art methods currently used in soil P research. These involve bulk and spatially resolved spectroscopic and spectrometric P speciation methods (1 and 2D NMR, IR, Raman, Q-TOF MS/MS, high resolution-MS, NanoSIMS, XRF, XPS, (µ)XAS) as well as methods for assessing soil P reactions (sorption isotherms, quantum-chemical modeling, microbial biomass P, enzymes activity, DGT, 33P isotopic exchange, 18O isotope ratios). Required experimental set-ups and the potentials and limitations of individual methods present a guide for the selection of most suitable methods or combinations.
PLOS ONE | 2015
Sebastian Oeder; Tamara Kanashova; Olli Sippula; Sean C. Sapcariu; Thorsten Streibel; Jose M. Arteaga-Salas; Johannes Passig; M. Dilger; Hanns-Rudolf Paur; C. Schlager; S. Mülhopt; S. Diabate; Carsten Weiss; Benjamin Stengel; R. Rabe; Horst Harndorf; Tiina Torvela; Jorma Jokiniemi; Maija-Riitta Hirvonen; Carsten B. Schmidt-Weber; Claudia Traidl-Hoffmann; Kelly Ann Berube; Anna Julia Wlodarczyk; Zoe Cariad Prytherch; Bernhard Michalke; T. Krebs; André S. H. Prévôt; Michael Kelbg; Josef Tiggesbäumker; Erwin Karg
Background Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. Objectives To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Methods Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. Results The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Conclusions Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices.
Analytical Chemistry | 2015
Christopher P. Rüger; Toni Miersch; Theo Schwemer; Martin Sklorz; Ralf Zimmermann
In this study, the hyphenation of a thermobalance to an ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometer (UHR FTICR MS) is presented. Atmospheric pressure chemical ionization (APCI) is used for efficient ionization. The evolved gas analysis (EGA), using high-resolution mass spectrometry allows the time-resolved molecular characterization of thermally induced processes in complex materials or mixtures, such as biomass or crude oil. The most crucial part of the setup is the hyphenation between the thermobalance and the APCI source. Evolved gases are forced to enter the atmospheric pressure ionization interface of the MS by applying a slight overpressure at the thermobalance side of the hyphenation. Using the FTICR exact mass data, detailed chemical information is gained by calculation of elemental compositions from the organic species, enabling a time and temperature resolved, highly selective detection of the evolved species. An additional selectivity is gained by the APCI ionization, which is particularly sensitive toward polar compounds. This selectivity on the one hand misses bulk components of petroleum samples such as alkanes and does not deliver a comprehensive view but on the other hand focuses particularly on typical evolved components from biomass samples. As proof of principle, the thermal behavior of different fossil fuels: heavy fuel oil, light fuel oil, and a crude oil, and different lignocellulosic biomass, namely, beech, birch, spruce, ash, oak, and pine as well as commercial available softwood and birch-bark pellets were investigated. The results clearly show the capability to distinguish between certain wood types through their molecular patterns and compound classes. Additionally, typical literature known pyrolysis biomass marker were confirmed by their elemental composition, such as coniferyl aldehyde (C10H10O3), sinapyl aldehyde (C11H12O4), retene (C18H18), and abietic acid (C20H30O2).
Analytical and Bioanalytical Chemistry | 2015
Christopher P. Rüger; Martin Sklorz; Theo Schwemer; Ralf Zimmermann
In this study, positive-mode laser desorption-ionisation ultra-high-resolution mass spectrometry (LDI-FT-ICR-MS) was applied to study combustion aerosol samples obtained from a ship diesel engine as well as the feed fuel, used to operate the engine. Furthermore, particulate matter was sampled from the exhaust tube using an impactor and analysed directly from the impaction foil without sample treatment. From the high percentage of shared sum formula as well as similarities in the chemical spread of aerosol and heavy fuel oil, results indicate that the primary aerosol mainly consists of survived, unburned species from the feed fuel. The effect of pyrosynthesis could be observed and was slightly more pronounced for the CH-class compared to other compound classes, but in summary not dominant. Alkylation pattern as well as the aromaticity distribution, using the double bond equivalent, revealed a shift towards lower alkylation state for the aerosol. The alkylation pattern of the most dominant series revealed a higher correlation between different aerosol samples than between aerosol and feed samples. This was confirmed by cluster analysis. Overall, this study shows that LDI-FT-ICR-MS can be successfully applied for the analysis of combustion aerosol at the molecular level and that sum formula information can be used to identify chemical differences between aerosol and fuel as well as between different size fractions of the particulate matter.
Analytical Chemistry | 2015
Theo Schwemer; Christopher P. Rüger; Martin Sklorz; Ralf Zimmermann
Atmospheric pressure chemical ionization (APCI) offers the advantage of molecular ion information with low fragmentation. Hyphenating APCI to gas chromatography (GC) and ultrahigh resolution mass spectrometry (FT-ICR MS) enables an improved characterization of complex mixtures. Data amounts acquired by this system are very huge, and existing peak picking algorithms are usually extremely time-consuming, if both gas chromatographic and ultrahigh resolution mass spectrometric data are concerned. Therefore, automatic routines are developed that are capable of handling these data sets and further allow the identification and removal of known ionization artifacts (e.g., water- and oxygen-adducts, demethylation, dehydrogenation, and decarboxylation). Furthermore, the data quality is enhanced by the prediction of an estimated retention index, which is calculated simply from exact mass data combined with a double bond equivalent correction. This retention index is used to identify mismatched elemental compositions. The approach was successfully tested for analysis of semivolatile components in heavy fuel oil and diesel fuel as well as primary combustion particles emitted by a ship diesel research engine. As a result, 10-28% of the detected compounds, mainly low abundant species, classically assigned by using only the mass spectrometric information, were identified as not valid and removed. Although GC separation is limited by the slow acquisition rate of the FT-ICR MS (<1 Hz), a database driven retention time comparison, as commonly used for low resolution GC/MS, can be applied for revealing isomeric information.
Methods | 2015
Jingzhi Yang; Claudia Röwer; Cornelia Koy; Manuela Ruß; Christopher P. Rüger; Ralf Zimmermann; Uwe von Fritschen; Marius Bredell; Juliane C. Finke; Michael O. Glocker
We developed a limited proteolysis assay for estimating dynamics in plasma-borne protease activities using MALDI ToF MS analysis as readout. A highly specific limited proteolysis activity was elicited in human plasma by shifting the pH to 6. Mass spectrometry showed that two singly charged ion signals at m/z 2753.44 and m/z 2937.56 significantly increased in abundance under mild acidic conditions as a function of incubation time. For proving that a provoked proteolytic activity in mild acidic solution caused the appearance of the observed peptides, control measurements were performed (i) with pepstatin as protease inhibitor, (ii) with heat-denatured samples, (iii) at pH 1.7, and (iv) at pH 7.5. Mass spectrometric fragmentation analysis showed that the observed peptides encompass the amino acid sequences 1-24 and 1-26 from the N-terminus of human serum albumin. Investigations on peptidase specificities suggest that the two best candidates for the observed serum albumin cleavages are cathepsin D and E. Reproducibility, robustness, and sensitivity prove the potential of the developed limited proteolysis assay to become of clinical importance for estimating dynamics of plasma-borne proteases with respect to associated pathophysiological tissue conditions.
European Journal of Mass Spectrometry | 2017
Marisa A Wirth; Christopher P. Rüger; Martin Sklorz; Ralf Zimmermann
Proton sponges are polyamines with high proton affinity that enable gentle deprotonation of even mildly acidic compounds. In this study, the concept of proton sponges as signal enhancing dopants for electrospray ionisation is presented for the first time. 1,8-Bis(dimethylamino)naphthalene (DMAN) and 1,8-bis(tetramethylguanidino)naphthalene (TMGN) were chosen as dopants, using methanol and acetonitrile/methanol as solvents. Individual standard compounds, compound mixtures and a diesel fuel as a complex sample matrix were investigated. Both proton sponges enhanced signal intensities in electrospray ionisation negative mode, but TMGN decomposed rapidly in methanolic solution. Significantly higher signals were only achieved using the acetonitrile/methanol mixture. On average a more than 10-fold higher signal intensity was measured with 10−3 mol l−1 DMAN concentration. A stronger signal increase of alcohol functionalities was observed compared to acid functionalities. All compound classes which were detected in the diesel fuel (CH– and CHOx–class) received roughly 100-fold higher signal intensities when using DMAN as a dopant. Furthermore, the number of detected compounds as well as the double bond equivalent of the detected compounds increased. The compound class distribution shifted when adding DMAN and the formerly dominant CHO2–, CHO3–, and CHO4– classes received similar relative intensities as formerly less accessible classes. The findings depict DMAN as a promising additive for electrospray ionisation negative analysis of at least mildly acidic compounds, even within complex sample material.
Energy & Fuels | 2015
Elize Smit; Christopher P. Rüger; Martin Sklorz; Stefan de Goede; Ralf Zimmermann; Egmont Richard Rohwer
Energy & Fuels | 2017
Christopher P. Rüger; Anika Neumann; Martin Sklorz; Theo Schwemer; Ralf Zimmermann
Analytica : 26.Internationale Leitmesse für Labortechnik, Analytik, Biotechnologie und Analytica Conference, München, 10.-13.April 2018 | 2018
Sebastian Oeder; J. Candeias; Tamara Kanashova; Sean C. Sapcariu; P. Richthammer; Benjamin Stengel; M. Dilger; Sivakumar Murugadoss; Olli Sippula; Thorsten Streibel; Martin Sklorz; Jürgen Orasche; A. Ulbrich; T. Miersch; Hendryk Czech; Christopher P. Rüger; Theo Schwemer; Horst Harndorf; B. Buchholz; Hanns-Rudolf Paur; Carsten Weiss; Jorma Jokiniemi; Maija-Riitta Hirvonen; Karsten Hiller; Gunnar Dittmar; Carsten B. Schmidt-Weber; Jeroen Buters; R. Zimmmermann