Christopher R. Weber
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher R. Weber.
Circulation Research | 2003
Valentino Piacentino; Christopher R. Weber; Xiongwen Chen; Jutta Weisser-Thomas; Kenneth B. Margulies; Donald M. Bers; Steven R. Houser
Abstract— Depressed contractility is a central feature of the failing human heart and has been attributed to altered [Ca2+]i. This study examined the respective roles of the L-type Ca2+ current (ICa), SR Ca2+ uptake, storage and release, Ca2+ transport via the Na+-Ca2+ exchanger (NCX), and Ca2+ buffering in the altered Ca2+ transients of failing human ventricular myocytes. Electrophysiological techniques were used to measure and control Vm and measure Im, respectively, and Fluo-3 was used to measure [Ca2+]i in myocytes from nonfailing (NF) and failing (F) human hearts. Ca2+ transients from F myocytes were significantly smaller and decayed more slowly than those from NF hearts. Ca2+ uptake rates by the SR and the amount of Ca2+ stored in the SR were significantly reduced in F myocytes. There were no significant changes in the rate of Ca2+ removal from F myocytes by the NCX, in the density of NCX current as a function of [Ca2+]i, ICa density, or cellular Ca2+ buffering. However, Ca2+ influx during the late portions of the action potential seems able to elevate [Ca2+]i in F but not in NF myocytes. A reduction in the rate of net Ca2+ uptake by the SR slows the decay of the Ca2+ transient and reduces SR Ca2+ stores. This leads to reduced SR Ca2+ release, which induces additional Ca2+ influx during the plateau phase of the action potential, further slowing the decay of the Ca2+ transient. These changes can explain the defective Ca2+ transients of the failing human ventricular myocyte.
Annual Review of Physiology | 2011
Le Shen; Christopher R. Weber; David R. Raleigh; Dan Yu; Jerrold R. Turner
Tissue barriers that restrict passage of liquids, ions, and larger solutes are essential for the development of multicellular organisms. In simple organisms this allows distinct cell types to interface with the external environment. In more complex species, the diversity of cell types capable of forming barriers increases dramatically. Although the plasma membranes of these barrier-forming cells prevent flux of most hydrophilic solutes, the paracellular, or shunt, pathway between cells must also be sealed. This function is accomplished in vertebrates by the zonula occludens, or tight junction. The tight junction barrier is not absolute but is selectively permeable and is able to discriminate between solutes on the basis of size and charge. Many tight junction components have been identified over the past 20 years, and recent progress has provided new insights into the proteins and interactions that regulate structure and function. This review presents these data in a historical context and proposes an integrated model in which dynamic regulation of tight junction protein interactions determines barrier function.
Circulation | 2002
Sanda Despa; Mohammed A. Islam; Christopher R. Weber; Steven M. Pogwizd; Donald M. Bers
Background—Intracellular sodium concentration ([Na+]i) modulates cardiac contractile and electrical activity through Na/Ca exchange (NCX). Upregulation of NCX in heart failure (HF) may magnify the functional impact of altered [Na+]i. Methods and Results—We measured [Na+]i by using sodium binding benzofuran isophthalate in control and HF rabbit ventricular myocytes (HF induced by aortic insufficiency and constriction). Resting [Na+]i was 9.7±0.7 versus 6.6±0.5 mmol/L in HF versus control. In both cases, [Na+]i increased by ≈2 mmol/L when myocytes were stimulated (0.5 to 3 Hz). To identify the mechanisms responsible for [Na+]i elevation in HF, we measured the [Na+]i dependence of Na/K pump–mediated Na+ extrusion. There was no difference in Vmax (8.3±0.7 versus 8.0±0.8 mmol/L/min) or Km (9.2±1.0 versus 9.9±0.8 mmol/L in HF and control, respectively). Therefore, at measured [Na+]i levels, the Na/K pump rate is actually higher in HF. However, resting Na+ influx was twice as high in HF versus control (2.3±0.3 versus 1.1±0.2 mmol/L/min), primarily the result of a tetrodotoxin-sensitive pathway. Conclusions—Myocyte [Na+]i is elevated in HF as a result of higher diastolic Na+ influx (with unaltered Na/K-ATPase characteristics). In HF, the combined increased [Na+]i, decreased Ca2+ transient, and prolonged action potential all profoundly affect cellular Ca2+ regulation, promoting greater Ca2+ influx through NCX during action potentials. Notably, the elevated [Na+]i may be critical in limiting the contractile dysfunction observed in HF.
Journal of Cell Biology | 2010
Amanda M. Marchiando; Le Shen; W. Vallen Graham; Christopher R. Weber; Brad T. Schwarz; Jotham R. Austin; David R. Raleigh; Yanfang Guan; Alastair J.M. Watson; Marshall H. Montrose; Jerrold R. Turner
Although tight junction morphology is not obviously affected by TNF, this proinflammatory cytokine promotes internalization of occludin, resulting in disrupted barrier function within the intestine.
Journal of Cell Biology | 2008
Le Shen; Christopher R. Weber; Jerrold R. Turner
The tight junction defines epithelial organization. Structurally, the tight junction is comprised of transmembrane and membrane-associated proteins that are thought to assemble into stable complexes to determine function. In this study, we measure tight junction protein dynamics in live confluent Madin–Darby canine kidney monolayers using fluorescence recovery after photobleaching and related methods. Mathematical modeling shows that the majority of claudin-1 (76 ± 5%) is stably localized at the tight junction. In contrast, the majority of occludin (71 ± 3%) diffuses rapidly within the tight junction with a diffusion constant of 0.011 μm2s−1. Zonula occludens-1 molecules are also highly dynamic in this region, but, rather than diffusing within the plane of the membrane, 69 ± 5% exchange between membrane and intracellular pools in an energy-dependent manner. These data demonstrate that the tight junction undergoes constant remodeling and suggest that this dynamic behavior may contribute to tight junction assembly and regulation.
Laboratory Investigation | 2008
Christopher R. Weber; Sam C. Nalle; Maria Tretiakova; David T. Rubin; Jerrold R. Turner
Patients with inflammatory bowel disease (IBD) are at increased risk of developing colorectal adenocarcinoma. The factors that result in IBD-associated carcinogenesis are not understood. We hypothesized that altered expression of intestinal epithelial tight junction proteins might contribute to neoplastic progression. Semiquantitative immunohistochemical staining of human biopsies was used to assess expression of the tight junction proteins claudin-1, claudin-2, claudin-4, and occludin in IBD, IBD-associated dysplasia, acute, self-limited colitis (ASLC), and sporadic adenomas. Claudin-1 and claudin-2 expression was elevated in active IBD, adenomas, and IBD-associated dysplasia, but not ASLC. In contrast, claudin-4 expression was elevated in both active IBD and ASLC. Occludin expression was similar to control in all cases. Importantly, in IBD, claudin-1 and claudin-2 expression correlated positively with inflammatory activity. To investigate mechanisms underlying altered claudin expression, β-catenin activation was assessed as nuclear localization. Like claudin-1 and claudin-2, β-catenin was markedly activated in IBD, sporadic dysplasia, and IBD-associated dysplasia, but was only slightly activated in ASLC. Taken together, these data suggest that β-catenin transcriptional activity is elevated in chronic injury and that this may contribute to increased claudin-1 and claudin-2 expression. We speculate that increased claudin-1 and claudin-2 expression may be involved at early stages of transformation in IBD-associated neoplasia.
Journal of Biological Chemistry | 2010
Christopher R. Weber; David R. Raleigh; Liping Su; Le Shen; Erika A. Sullivan; Yingmin Wang; Jerrold R. Turner
Intestinal barrier function is reduced in inflammatory bowel disease (IBD). Tumor necrosis factor (TNF) and interleukin (IL)-13, which are up-regulated in IBD, induce barrier defects that are associated with myosin light chain kinase (MLCK) activation and increased claudin-2 expression, respectively, in cultured intestinal epithelial monolayers. Here we report that these independent signaling pathways have distinct effects on tight junction barrier properties and interact in vivo. MLCK activation alters size selectivity to enhance paracellular flux of uncharged macromolecules without affecting charge selectivity and can be rapidly reversed by MLCK inhibition. In contrast, IL-13-dependent claudin-2 expression increases paracellular cation flux in vitro and in vivo without altering tight junction size selectivity but is unaffected by MLCK inhibition in vitro. In vivo, MLCK activation increases paracellular flux of uncharged macromolecules and also triggers IL-13 expression, claudin-2 synthesis, and increased paracellular cation flux. We conclude that reversible, MLCK-dependent permeability increases cause mucosal immune activation that, in turn, feeds back on the tight junction to establish long-lasting barrier defects. Interactions between these otherwise distinct tight junction regulatory pathways may contribute to IBD pathogenesis.
Journal of Cell Biology | 2011
David R. Raleigh; Devin M. Boe; Dan Yu; Christopher R. Weber; Amanda M. Marchiando; Emily M. Bradford; Yingmin Wang; Licheng Wu; Eveline E. Schneeberger; Le Shen; Jerrold R. Turner
Occludin S408 phosphorylation regulates interactions between occludin, ZO-1, and select claudins to define tight junction molecular structure and barrier function.
Circulation | 2003
Christopher R. Weber; Valentino Piacentino; Steven R. Houser; Donald M. Bers
Background—Sarcolemmal Na/Ca exchange (NCX) regulates cardiac Ca and contractility. NCX function during the cardiac cycle is determined by intracellular [Ca] and [Na] ([Ca]i, and [Na]i) and membrane potential (Em), which all change in human heart failure (HF). Therefore, changes in NCX function may contribute to abnormal Ca regulation in human HF. Methods and Results—We assessed the cellular bases of differences in NCX function in ventricular myocytes from failing (F) and nonfailing (NF) human hearts. Allosteric activation of NCX by [Ca]i was comparable in F and NF myocytes (K1/2=150±31 nmol/L, n=7). The steady-state relation between [Ca]i and NCX current (INCX) was used to infer the local submembrane [Ca]i ([Ca]sm) that is sensed by NCX dynamically during the action potential (AP) and Ca transient (37°C). This involved “tail”INCX measurement during abrupt repolarization of APs and Ca transients, where peak inward INCX indicates [Ca]sm. This allows inference of the direction of Ca transport by the NCX during the AP. In NF myocytes, NCX extrudes Ca for most of the AP. Three factors shift the direction of NCX-mediated Ca transport (to favor more Ca influx) in F versus NF myocytes, as follows: (1) reduced [Ca]sm, (2) prolonged AP duration, and (3) elevated [Na]i. Conclusions—These results show that Ca entry through NCX may limit systolic dysfunction due to reduced sarcoplasmic reticulum Ca stores in HF but could contribute to slow decay of the [Ca]i transient and to diastolic dysfunction.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Dan Yu; Amanda M. Marchiando; Christopher R. Weber; David R. Raleigh; Yingmin Wang; Le Shen; Jerrold R. Turner
The perijunctional actomyosin ring contributes to myosin light chain kinase (MLCK)-dependent tight junction regulation. However, the specific protein interactions involved in this process are unknown. To test the hypothesis that molecular remodeling contributes to barrier regulation, tight junction protein dynamic behavior was assessed by fluorescence recovery after photobleaching (FRAP). MLCK inhibition increased barrier function and stabilized ZO-1 at the tight junction but did not affect claudin-1, occludin, or actin exchange in vitro. Pharmacologic MLCK inhibition also blocked in vivo ZO-1 exchange in wild-type, but not long MLCK−/−, mice. Conversely, ZO-1 exchange was accelerated in transgenic mice expressing constitutively active MLCK. In vitro, ZO-1 lacking the actin binding region (ABR) was not stabilized by MLCK inhibition, either in the presence or absence of endogenous ZO-1. Moreover, the free ABR interfered with full-length ZO-1 exchange and reduced basal barrier function. The free ABR also prevented increases in barrier function following MLCK inhibition in a manner that required endogenous ZO-1 expression. In silico modeling of the FRAP data suggests that tight junction-associated ZO-1 exists in three pools, two of which exchange with cytosolic ZO-1. Transport of the ABR-anchored exchangeable pool is regulated by MLCK. These data demonstrate a critical role for the ZO-1 ABR in barrier function and suggest that MLCK-dependent ZO-1 exchange is essential to this mechanism of barrier regulation.