Gehong Wei
Northwest A&F University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gehong Wei.
Journal of Hazardous Materials | 2010
Huifen Li; Yanbing Lin; Wumeng Guan; Jiali Chang; Lin Xu; Junkang Guo; Gehong Wei
The biosorption characteristics of Zn(II) using live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14 as biosorbents have been investigated in the present research. Optimum conditions for biosorption were determined to be: pH adjusted to 5.0, agitated at 90 rpm and at a dose of 2 g/L. For initial zinc concentrations of 1-150 mg/L, batch biosorption data of live biomass preferred to be simulated with Freundlich model while those of dead strain fit Langmuir isotherm well. Experimental maximum biosorption capacity turned out to be 42.75 mg/g (0.654 mmol/g) for living material and 54 mg/g (0.826 mmol/g) for dead sorbents, respectively. The pseudo-second-order equation, instead of the pseudo-first-order one, was chosen to describe the time course biosorption process. In contrast to live biosorbents, dead biomass seemed to have lower binding strength with higher desorption efficiency at pH 1.0. Competitive biosorption revealed the order of competing metal ion to be: Cu(2+)>Cd(2+)>Ni(+). FT-IR analysis indicated that more functional groups were involved in the biosorption process of dead adsorbents, compared with those linked to live biomass. Taken together, it can be concluded that dead cells of CCNWHX 72-14 were better and cheaper biosorbents than live ones.
Journal of Hazardous Materials | 2009
Gehong Wei; Lianmei Fan; Wenfei Zhu; Yunyun Fu; Jianfu Yu; Ming Tang
A total of 108 strains of bacteria were isolated from root nodules of wild legumes growing in gold mine tailings in northwest of China and were tested for heavy metal resistance. The results showed that the bacterial strain CCNWRS33-2 isolated from Lespedeza cuneata was highly resistant to copper, cadmium, lead and zinc. The strain had a relatively high mean specific growth rate under each heavy metal stress test and exhibited a high degree of bioaccumulation ability. The partial sequence of the copper resistance gene copA was amplified from the strain and a sequence comparison with our Cu-resistant PCR fragment showed a high homology with Cu-resistant genes from other bacteria. Phylogenetic analysis based on the 16S rRNA gene sequence showed that CCNWRS33-2 belongs to the Rhizobium-Agrobacterium branch and it had 98.9% similarity to Agrobactrium tumefaciens LMG196.
Bioresource Technology | 2011
Lian-Mei Fan; Zhan-Qiang Ma; Jian-Qiang Liang; Huifen Li; En-Tao Wang; Gehong Wei
A root nodule bacterium, Sinorhizobium meliloti CCNWSX0020, resistant to 1.4 mM Cu2+ was isolated from Medicago lupulina growing in mine tailings. In medium supplied with copper, this bacterium showed cell deformation and aggregation due to precipitation of copper on the cell surface. Genes similar to the copper-resistant genes, pcoR and pcoA from Escherichia coli, were amplified by PCR from a 1.4-Mb megaplasmid. Inoculation with S. meliloti CCNWSX0020 increased the biomass of M. lupulina grown in medium added 0 and 100 mg Cu2+ kg(-1) by 45.8% and 78.2%, respectively, and increased the copper concentration inside the plant tissues grown in medium supplied with 100 μM Cu2+ by 39.3%, demonstrating that it is a prospective symbiotic system for bioremediation purposes.
International Journal of Phytoremediation | 2014
Xiuli Hao; Safiyh Taghavi; P. Xie; Marc J. Orbach; Hend A. Alwathnani; Christopher Rensing; Gehong Wei
Legumes are important for nitrogen cycling in the environment and agriculture due to the ability of nitrogen fixation by rhizobia. In this review, we introduce an important and potential role of legume-rhizobia symbiosis in aiding phytoremediation of some metal contaminated soils as various legumes have been found to be the dominant plant species in metal contaminated areas. Resistant rhizobia used for phytoremediation could act on metals directly by chelation, precipitation, transformation, biosorption and accumulation. Moreover, the plant growth promoting (PGP) traits of rhizobia including nitrogen fixation, phosphorus solubilization, phytohormone synthesis, siderophore release, and production of ACC deaminase and the volatile compounds of acetoin and 2, 3-butanediol may facilitate legume growth while lessening metal toxicity. The benefits of using legumes inoculated with naturally resistant rhizobia or recombinant rhizobia with enhanced resistance, as well as co-inoculation with other plant growth promoting bacteria (PGPB) are discussed. However, the legume-rhizobia symbiosis appears to be sensitive to metals, and the effect of metal toxicity on the interaction between legumes and rhizobia is not clear. Therefore, to obtain the maximum benefits from legumes assisted by rhizobia for phytoremediation of metals, it is critical to have a good understanding of interactions between PGP traits, the symbiotic plant-rhizobia relationship and metals.
PLOS Pathogens | 2015
Tietao Wang; Meiru Si; Yunhong Song; Wenhan Zhu; Fen Gao; Yao Wang; Lei Zhang; Weipeng Zhang; Gehong Wei; Zhao-Qing Luo; Xihui Shen
Type VI secretion systems (T6SSs) are widespread multi-component machineries that translocate effectors into either eukaryotic or prokaryotic cells, for virulence or for interbacterial competition. Herein, we report that the T6SS-4 from Yersinia pseudotuberculosis displays an unexpected function in the transportation of Zn2+ to combat diverse stresses and host immunity. Environmental insults such as oxidative stress induce the expression of T6SS-4 via OxyR, the transcriptional factor that also regulates many oxidative response genes. Zinc transportation is achieved by T6SS-4-mediated translocation of a novel Zn2+-binding protein substrate YezP (YPK_3549), which has the capacity to rescue the sensitivity to oxidative stress exhibited by T6SS-4 mutants when added to extracellular milieu. Disruption of the classic zinc transporter ZnuABC together with T6SS-4 or yezP results in mutants that almost completely lost virulence against mice, further highlighting the importance of T6SS-4 in resistance to host immunity. These results assigned an unconventional role to T6SSs, which will lay the foundation for studying novel mechanisms of metal ion uptake by bacteria and the role of this process in their resistance to host immunity and survival in harmful environments.
Applied and Environmental Microbiology | 2012
Xiuli Hao; Pin Xie; Laurel Johnstone; Susan J. Miller; Gehong Wei
ABSTRACT The plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286, isolated from the nodules of Robinia pseudoacacia growing in zinc-lead mine tailings, both displayed high metal resistance and enhanced the growth of Robinia plants in a metal-contaminated environment. Our goal was to determine whether bacterial metal resistance or the capacity to produce phytohormones had a larger impact on the growth of host plants under zinc stress. Eight zinc-sensitive mutants and one zinc-sensitive mutant with reduced indole-3-acetic acid (IAA) production were obtained by transposon mutagenesis. Analysis of the genome sequence and of transcription via reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that ZntA-4200 and the transcriptional regulator ZntR1 played important roles in the zinc homeostasis of A. tumefaciens CCNWGS0286. In addition, interruption of a putative oligoketide cyclase/lipid transport protein reduced IAA synthesis and also showed reduced zinc and cadmium resistance but had no influence on copper resistance. In greenhouse studies, R. pseudoacacia inoculated with A. tumefaciens CCNWGS0286 displayed a significant increase in biomass production over that without inoculation, even in a zinc-contaminated environment. Interestingly, the differences in plant biomass improvement among A. tumefaciens CCNWGS0286, A. tumefaciens C58, and zinc-sensitive mutants 12-2 (zntA::Tn5) and 15-6 (low IAA production) revealed that phytohormones, rather than genes encoding zinc resistance determinants, were the dominant factor in enhancing plant growth in contaminated soil.
Journal of Hazardous Materials | 2013
Wenjie Hou; Zhanqiang Ma; Liangliang Sun; Mengsha Han; Jianjun Lu; Zhenxiu Li; Osama Abdalla Mohamad; Gehong Wei
The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4mM Cu(2+). Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu(2+). EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu(2+). The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu(2+) immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (COOH), hydroxyl (OH), and amide (NH), primarily involved in metal ion binding.
Ecotoxicology and Environmental Safety | 2012
Yanbing Lin; Xinye Wang; Baoping Wang; Osama Abdalla Mohamad; Gehong Wei
The bioaccumulation characteristics of Zn(2+) and Cd(2+) by a novel species, Streptomyces zinciresistens CCNWNQ0016(T), were investigated. S. zinciresistens accumulated Zn(2+) and Cd(2+) mainly on the cell wall followed by intracellular accumulation. The mycelium was deformed, aggregated and formed precipitate of zinc and cadmium on the cell surface. Electron dense granules were detected on the cell wall as well as within the cytoplasm. The amino, carboxyl, hydroxyl and carbonyl groups were responsible for the biosorption of Zn(2+) and Cd(2+). The Langmuir isotherm model fitted the experimental data of metals adsorption processes better than Freundlich isotherm model. Cu(2+) and Cr(3+) competed for adsorption sites on the cell surface with Zn(2+) and Cd(2+). 87.33% and 98.11% recovery of Zn(2+) and Cd(2+), respectively, could be obtained at pH≤2 from metal-loaded biomass of S. zinciresistens desorption.
Journal of Bacteriology | 2012
Yanbing Lin; Haoxin Fan; Xiuli Hao; Laurel Johnstone; Yao Hu; Gehong Wei; Hend A. Alwathnani; Gejiao Wang
We report the draft genome sequence of arsenite-oxidizing Halomonas sp. strain HAL1, isolated from the soil of a gold mine. Genes encoding proteins involved in arsenic resistance and transformation, phosphate utilization and uptake, and betaine biosynthesis were identified. Their identification might help in understanding how arsenic and phosphate metabolism are intertwined.
Systematic and Applied Microbiology | 2010
Longfei Zhao; Zhenshan Deng; Wenquan Yang; Ying Cao; Entao Wang; Gehong Wei
A total of seventy-five symbiotic bacterial strains isolated from root nodules of wild Sophora alopecuroides grown in different regions of Chinas Loess Plateau were characterized. Based on the combined RFLP patterns, thirty-five genotypes were defined among the rhizobia and they were classified into nine genomic species, including Mesorhizobium alhagi and M. gobiense as the main groups, as well as Agrobacterium tumefaciens, M. amorphae, Phyllobacterium trifolii, Rhizobium giardinii, R. indigoferae, Sinorhizobium fredii and S. meliloti as the minor groups according to the 16S rRNA and recA gene analyses. Five and three lineages of nodA and nifH were found, respectively, in these strains, implying that the symbiotic genes of the S. alopecuroides rhizobia had different origins or had divergently evolved. Results of correspondence analysis showed that there was a correlation between rhizobial genotypes and the geographic origins. Possible lateral transfer of the recA and 16S rRNA genes between the P. trifolii and A. tumefaciens strains, and that of symbiotic genes (nodA, nifH) between different genera, was shown by discrepancies of the phylogenetic relationships of the four gene loci. These results revealed diverse rhizobia associated with wild S. alopecuroides grown in different regions of Chinas Loess Plateau, and demonstrated for the first time the existence of symbiotic A. tumefaciens strains in root nodules of S. alopecuroides.