Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher S. Leonard is active.

Publication


Featured researches published by Christopher S. Leonard.


Journal of Neurophysiology | 2008

Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons: noisy cation current activation and selective enhancement of Ca2+ transients mediated by L-type calcium channels.

Kristi A. Kohlmeier; Shigeo Watanabe; Christopher J. Tyler; Sophie Burlet; Christopher S. Leonard

The hypocretin/orexins (Hcrt/Orxs) are hypothalamic neuropeptides that regulate stress, addiction, feeding, and arousal behaviors. They depolarize many types of central neurons and can increase [Ca2+]i in some, including those of the dorsal raphe (DR) and laterodorsal tegmental (LDT) nuclei-two structures likely to contribute to the behavioral actions of Hcrt/Orx. In this study, we used simultaneous whole cell and Ca2+-imaging methods in mouse brain slices to compare the Hcrt/Orx-activated current in DR and LDT neurons and to determine whether it contributes to the Ca2+ influx evoked by Hcrt/Orx. We found Hcrt/Orx activates a similar noisy cation current that reversed near 0 mV in both cell types. Contrary to our expectation, this current did not contribute to the somatic Ca2+ influx evoked by Hcrt/Orx. In contrast, Hcrt/Orx enhanced the Ca2+ transients produced by voltage steps (-60 to -30 mV) by approximately 30% even in neurons lacking an inward current. This effect was abolished by nifedipine, augmented by Bay-K and abolished by bisindolylmaleimide I. Thus Hcrt/Orx has two independent actions: activation of noisy cation channels that generate depolarization and activation of a protein kinase C (PKC)-dependent enhancement of Ca2+ transients mediated by L-type Ca2+ channels. Immunocytochemistry verified that both these actions occurred in serotonergic and cholinergic neurons, indicating that Hcrt/Orx can function as a neuromodulator in these key neurons of the reticular activating system. Because regulation of Ca2+ transients mediated by L-channels is often linked to the control of transcriptional signaling, our findings imply that Hcrt/Orxs may also function in the regulation of long-term homeostatic or trophic processes.


The Journal of Neuroscience | 2005

Specific Functions of Synaptically Localized Potassium Channels in Synaptic Transmission at the Neocortical GABAergic Fast-Spiking Cell Synapse

Ethan M. Goldberg; Shigeo Watanabe; Su Ying Chang; Rolf H. Joho; Z. Josh Huang; Christopher S. Leonard; Bernardo Rudy

Potassium (K+) channel subunits of the Kv3 subfamily (Kv3.1-Kv3.4) display a positively shifted voltage dependence of activation and fast activation/deactivation kinetics when compared with other voltage-gated K+ channels, features that confer on Kv3 channels the ability to accelerate the repolarization of the action potential (AP) efficiently and specifically. In the cortex, the Kv3.1 and Kv3.2 proteins are expressed prominently in a subset of GABAergic interneurons known as fast-spiking (FS) cells and in fact are a significant determinant of the fast-spiking discharge pattern. However, in addition to expression at FS cell somata, Kv3.1 and Kv3.2 proteins also are expressed prominently at FS cell terminals, suggesting roles for Kv3 channels in neurotransmitter release. We investigated the effect of 1.0 mm tetraethylammonium (TEA; which blocks Kv3 channels) on inhibitory synaptic currents recorded in layer II/III neocortical pyramidal cells. Spike-evoked GABA release by FS cells was enhanced nearly twofold by 1.0 mm TEA, with a decrease in the paired pulse ratio (PPR), effects not reproduced by blockade of the non-Kv3 subfamily K+ channels also blocked by low concentrations of TEA. Moreover, in Kv3.1/Kv3.2 double knock-out (DKO) mice, the large effects of TEA were absent, spike-evoked GABA release was larger, and the PPR was lower than in wild-type mice. Together, these results suggest specific roles for Kv3 channels at FS cell terminals that are distinct from those of Kv1 and large-conductance Ca2+-activated K+ channels (also present at the FS cell synapse). We propose that at FS cell terminals synaptically localized Kv3 channels keep APs brief, limiting Ca2+ influx and hence release probability, thereby influencing synaptic depression at a synapse designed for sustained high-frequency synaptic transmission.


The Journal of Neuroscience | 2005

Urotensin II Modulates Rapid Eye Movement Sleep through Activation of Brainstem Cholinergic Neurons

Salvador Huitron-Resendiz; Morten P. Kristensen; Manuel Sanchez-Alavez; Stewart D. Clark; Stephen L. Grupke; Christopher W. Tyler; Chisa Suzuki; Hans-Peter Nothacker; Olivier Civelli; José R. Criado; Steven J. Henriksen; Christopher S. Leonard; Luis de Lecea

Urotensin II (UII) is a cyclic neuropeptide with strong vasoconstrictive activity in the peripheral vasculature. UII receptor mRNA is also expressed in the CNS, in particular in cholinergic neurons located in the mesopontine tegmental area, including the pedunculopontine tegmental (PPT) and lateral dorsal tegmental nuclei. This distribution suggests that the UII system is involved in functions regulated by acetylcholine, such as the sleep-wake cycle. Here, we tested the hypothesis that UII influences cholinergic PPT neuron activity and alters rapid eye movement (REM) sleep patterns in rats. Local administration of UII into the PPT nucleus increases REM sleep without inducing changes in the cortical blood flow. Intracerebroventricular injection of UII enhances both REM sleep and wakefulness and reduces slow-wave sleep 2. Intracerebroventricular, but not local, administration of UII increases cortical blood flow. Moreover, whole-cell recordings from rat-brain slices show that UII selectively excites cholinergic PPT neurons via an inward current and membrane depolarization that were accompanied by membrane conductance decreases. This effect does not depend on action potential generation or fast synaptic transmission because it persisted in the presence of TTX and antagonists of ionotropic glutamate, GABA, and glycine receptors. Collectively, these results suggest that UII plays a role in the regulation of REM sleep independently of its cerebrovascular actions by directly activating cholinergic brainstem neurons.


PLOS ONE | 2011

Cholinergic modulation of narcoleptic attacks in double orexin receptor knockout mice.

Mike Kalogiannis; Emily Hsu; Jon T. Willie; Richard M. Chemelli; Masashi Yanagisawa; Christopher S. Leonard

To investigate how cholinergic systems regulate aspects of the sleep disorder narcolepsy, we video-monitored mice lacking both orexin (hypocretin) receptors (double knockout; DKO mice) while pharmacologically altering cholinergic transmission. Spontaneous behavioral arrests in DKO mice were highly similar to those reported in orexin-deficient mice and were never observed in wild-type (WT) mice. A survival analysis revealed that arrest lifetimes were exponentially distributed indicating that random, Markovian processes determine arrest lifetime. Low doses (0.01, 0.03 mg/kg, IP), but not a high dose (0.08 mg/kg, IP) of the cholinesterase inhibitor physostigmine increased the number of arrests but did not alter arrest lifetimes. The muscarinic antagonist atropine (0.5 mg/kg, IP) decreased the number of arrests, also without altering arrest lifetimes. To determine if muscarinic transmission in pontine areas linked to REM sleep control also influences behavioral arrests, we microinjected neostigmine (50 nl, 62.5 µM) or neostigmine + atropine (62.5 µM and 111 µM respectively) into the nucleus pontis oralis and caudalis. Neostigmine increased the number of arrests in DKO mice without altering arrest lifetimes but did not provoke arrests in WT mice. Co-injection of atropine abolished this effect. Collectively, our findings establish that behavioral arrests in DKO mice are similar to those in orexin deficient mice and that arrests have exponentially distributed lifetimes. We also show, for the first time in a rodent narcolepsy model, that cholinergic systems can regulate arrest dynamics. Since perturbations of muscarinic transmission altered arrest frequency but not lifetime, our findings suggest cholinergic systems influence arrest initiation without influencing circuits that determine arrest duration.


Neuropsychopharmacology | 2009

Nicotinic Activation of Laterodorsal Tegmental Neurons: Implications for Addiction to Nicotine

Masaru Ishibashi; Christopher S. Leonard; Kristi A. Kohlmeier

Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. The actions of nicotine on LDT neurons are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca2+-imaging methods in brain slices from mice (P12–P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane depolarization that often induced firing and TTX-resistant inward currents. Nicotine also enhanced sensitivity to injected current; and, baseline changes in intracellular calcium were elicited in the dendrites of some cholinergic LDT cells. In addition, activity-dependent calcium transients were increased, suggesting that nicotine exposure sufficient to induce firing may lead to enhancement of levels of intracellular calcium. Nicotine also had strong actions on glutamate and GABA-releasing presynaptic terminals, as it greatly increased the frequency of miniature EPSCs and IPSCs to both cholinergic and non-cholinergic neurons. Utilization of nicotinic acetylcholine receptors (nAChR) subunit antagonists revealed that presynaptic, inhibitory terminals on cholinergic neurons were activated by receptors containing α7, β2, and non-α7 subunits, whereas, presynaptic glutamatergic terminals were activated by nAChRs that comprised non-α7 subunits. We also found that direct nicotinic actions on cholinergic LDT neurons were mediated by receptors containing α7, β2, and non-α7 subunits. These findings led us to suggest that nicotine exposure from smoking will enhance both the excitability and synaptic modulation of cholinergic and non-cholinergic LDT neurons, and increase their signature neurotransmitter outflow to target regions, including the VTA. This may reinforce the direct actions of this drug within reward circuitry and contribute to encoding stimulus saliency.


Frontiers in Neuroscience | 2013

Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

Kristi A. Kohlmeier; Christopher J. Tyler; Mike Kalogiannis; Masaru Ishibashi; Morten Pilgaard Kristensen; Iryna Gumenchuk; Richard M. Chemelli; Masashi Yanagisawa; Christopher S. Leonard

Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2) are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic [laterodorsal tegmental nucleus (LDT)] and monoaminergic [dorsal raphe (DR) and locus coeruleus (LC)] brainstem nuclei—where orexins promote arousal and suppress REM sleep. In slices from OX−/−2 mice, orexin-A (300 nM) elicited wild-type responses in LDT, DR, and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX−/−1 mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX−/−1 mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2+ transients produced by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor knockout mice.


European Journal of Neuroscience | 2010

Narcoleptic orexin receptor knockout mice express enhanced cholinergic properties in laterodorsal tegmental neurons

Mike Kalogiannis; S. L. Grupke; P. E. Potter; John G. Edwards; Richard M. Chemelli; Masashi Yanagisawa; Christopher S. Leonard

Pharmacological studies of narcoleptic canines indicate that exaggerated pontine cholinergic transmission promotes cataplexy. As disruption of orexin (hypocretin) signaling is a primary defect in narcolepsy with cataplexy, we investigated whether markers of cholinergic synaptic transmission might be altered in mice constitutively lacking orexin receptors (double receptor knockout; DKO). mRNA for Choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT) and the high‐affinity choline transporter (CHT1) but not acetylcholinesterase (AChE) was significantly higher in samples from DKO than wild‐type (WT) mice. This was region‐specific; levels were elevated in samples from the laterodorsal tegmental nucleus (LDT) and the fifth motor nucleus (Mo5) but not in whole brainstem samples. Consistent with region‐specific changes, we were unable to detect significant differences in Western blots for ChAT and CHT1 in isolates from brainstem, thalamus and cortex or in ChAT enzymatic activity in the pons. However, using ChAT immunocytochemistry, we found that while the number of cholinergic neurons in the LDT and Mo5 were not different, the intensity of somatic ChAT immunostaining was significantly greater in the LDT, but not Mo5, from DKO than from WT mice. We also found that ChAT activity was significantly reduced in cortical samples from DKO compared with WT mice. Collectively, these findings suggest that the orexins can regulate neurotransmitter expression and that the constitutive absence of orexin signaling results in an up‐regulation of the machinery necessary for cholinergic neurotransmission in a mesopontine population of neurons that have been associated with both normal rapid eye movement sleep and cataplexy.


European Journal of Neuroscience | 2006

Transmitter modulation of spike‐evoked calcium transients in arousal related neurons: muscarinic inhibition of SNX‐482‐sensitive calcium influx

Kristi A. Kohlmeier; Christopher S. Leonard

Nitric oxide synthase (NOS)‐containing cholinergic neurons in the laterodorsal tegmentum (LDT) influence behavioral and motivational states through their projections to the thalamus, ventral tegmental area and a brainstem ‘rapid eye movement (REM)‐induction’ site. Action potential‐evoked intracellular calcium transients dampen excitability and stimulate NO production in these neurons. In this study, we investigated the action of several arousal‐related neurotransmitters and the role of specific calcium channels in these LDT Ca2+‐transients by simultaneous whole‐cell recording and calcium imaging in mouse (P14–P30) brain slices. Carbachol, noradrenaline and adenosine inhibited spike‐evoked Ca2+‐transients, while histamine, t‐ACPD, a metabotropic glutamate receptor agonist, and orexin‐A did not. Carbachol inhibition was blocked by atropine, was insensitive to blockade of G‐protein‐coupled inward rectifier (GIRK) channels and was not inhibited by nifedipine, ω‐conotoxin GVIA or ω‐agatoxin IVA, which block L‐, N‐ and P/Q‐type calcium channels, respectively. In contrast, SNX‐482 (100 nm), a selective antagonist of R‐type calcium channels containing the alpha1E (Cav2.3) subunit, attenuated carbachol inhibition of the somatic spike‐evoked calcium transient. To our knowledge, this is the first demonstration of muscarinic inhibition of native SNX‐482‐sensitive R‐channels. Our findings indicate that muscarinic modulation of these channels plays an important role in the feedback control of cholinergic LDT neurons and that inhibition of spike‐evoked Ca2+‐transients is a common action of neurotransmitters that also activate GIRK channels in these neurons. Because spike‐evoked calcium influx dampens excitability, our findings suggest that these ‘inhibitory’ transmitters could boost firing rate and enhance responsiveness to excitatory inputs during states of high firing, such as waking and REM sleep.


Neuropharmacology | 2014

Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction

Mark H. Christensen; Masaru Ishibashi; Michael L. Nielsen; Christopher S. Leonard; Kristi A. Kohlmeier

The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7-P15), nicotine induced larger intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15-P34). Nicotine increased neuronal firing of cholinergic cells to a greater degree in younger animals, possibly linked to development associated differences found in nicotinic effects on action potential shape and afterhyperpolarization. We conclude that in addition to age-associated alterations of several properties expected to affect resting cell excitability, parameters affecting cell excitability are altered by nicotine differentially across ontogeny. Taken together, our data suggest that nicotine induces a larger excitatory response in cholinergic LDT neurons from the youngest animals, which could result in a greater excitatory output from these cells to target regions involved in development of addiction. Such output would be expected to be promotive of addiction; therefore, ontogenetic differences in nicotine-mediated increases in the excitability of the LDT could contribute to the differential susceptibility to nicotine addiction seen across age.


Journal of Neurophysiology | 2012

Knockouts reveal overlapping functions of M2 and M4 muscarinic receptors and evidence for a local glutamatergic circuit within the laterodorsal tegmental nucleus

Kristi A. Kohlmeier; Masaru Ishibashi; Jürgen Wess; Martha E. Bickford; Christopher S. Leonard

Cholinergic neurons in the laterodorsal tegmental (LDT) and peduncolopontine tegmental (PPT) nuclei regulate reward, arousal, and sensory gating via major projections to midbrain dopamine regions, the thalamus, and pontine targets. Muscarinic acetylcholine receptors (mAChRs) on LDT neurons produce a membrane hyperpolarization and inhibit spike-evoked Ca(2+) transients. Pharmacological studies suggest M(2) mAChRs are involved, but the role of these and other localized mAChRs (M(1-)-M(4)) has not been definitively tested. To identify the underlying receptors and to circumvent the limited receptor selectivity of available mAChR ligands, we used light- and electron-immunomicroscopy and whole cell recording with Ca(2+) imaging in brain slices from knockout mice constitutively lacking either M(2), M(4), or both mAChRs. Immunomicroscopy findings support a role for M(2) mAChRs, since cholinergic and noncholinergic LDT and pedunculopontine tegmental neurons contain M(2)-specific immunoreactivity. However, whole cell recording revealed that the presence of either M(2) or M(4) mAChRs was sufficient, and that the presence of at least one of these receptors was required for these carbachol actions. Moreover, in the absence of M(2) and M(4) mAChRs, carbachol elicited both direct excitation and barrages of spontaneous excitatory postsynaptic potentials (sEPSPs) in cholinergic LDT neurons mediated by M(1) and/or M(3) mAChRs. Focal carbachol application to surgically reduced slices suggest that local glutamatergic neurons are a source of these sEPSPs. Finally, neither direct nor indirect excitation were knockout artifacts, since each was detected in wild-type slices, although sEPSP barrages were delayed, suggesting M(2) and M(4) receptors normally delay excitation of glutamatergic inputs. Collectively, our findings indicate that multiple mAChRs coordinate cholinergic outflow from the LDT in an unexpectedly complex manner. An intriguing possibility is that a local circuit transforms LDT muscarinic inputs from a negative feedback signal for transient inputs into positive feedback for persistent inputs to facilitate different firing patterns across behavioral states.

Collaboration


Dive into the Christopher S. Leonard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard M. Chemelli

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie Burlet

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge