Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher S. Sullivan is active.

Publication


Featured researches published by Christopher S. Sullivan.


Nature | 2005

SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells

Christopher S. Sullivan; Adam Grundhoff; Satvir S. Tevethia; James M. Pipas; Don Ganem

MicroRNAs (miRNAs) are small (∼ 22-nucleotide) RNAs that in lower organisms serve important regulatory roles in development and gene expression, typically by forming imperfect duplexes with target messenger RNAs. miRNAs have also been described in mammalian cells and in infections with Epstein–Barr virus (EBV), but the function of most of them is unknown. Although one EBV miRNA probably altered the processing of a viral mRNA, the regulatory significance of this event is uncertain, because other transcripts exist that can supply the targeted function. Here we report the identification of miRNAs encoded by simian virus 40 (SV40) and define their functional significance for viral infection. SVmiRNAs accumulate at late times in infection, are perfectly complementary to early viral mRNAs, and target those mRNAs for cleavage. This reduces the expression of viral T antigens but does not reduce the yield of infectious virus relative to that generated by a mutant lacking SVmiRNAs. However, wild-type SV40-infected cells are less sensitive than the mutant to lysis by cytotoxic T cells, and trigger less cytokine production by such cells. Thus, viral evolution has taken advantage of the miRNA pathway to generate effectors that enhance the probability of successful infection.


Journal of Biological Chemistry | 2007

Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b

Gary K. Scott; Andrei Goga; Dipa Bhaumik; Crystal E. Berger; Christopher S. Sullivan; Christopher C. Benz

Deregulation of micro-RNAs (miRNAs) is emerging as a major aspect of cancer etiology because their capacity to direct the translation and stability of targeted transcripts can dramatically influence cellular physiology. To explore the potential of exogenously applied miRNAs to suppress oncogenic proteins, the ERBB oncogene family was chosen with a bioinformatics search identifying targeting seed sequences for miR-125a and miR-125b within the 3′-untranslated regions of both ERBB2 and ERBB3. Using the human breast cancer cell line SKBR3 as a model for ERBB2 and ERBB3 dependence, infection of these cells with retroviral constructs expressing either miR-125a or miR-125b resulted in suppression of ERBB2 and ERBB3 at both the transcript and protein level. Luciferase constructs containing the 3′ 3′-untranslated regions of ERBB2 and ERBB3 demonstrated ∼35% less activity in miR-125a- and miR-125b-expressing cells relative to controls. Additionally, phosphorylation of ERK1/2 and AKT was suppressed in SKBR3 cells overexpressing either miR-125a or miR-125b. Consistent with suppression of both ERBB2 and ERBB3 signaling, miR-125a-or miR-125b-overexpressing SKBR3 cells were impaired in their anchorage-dependent growth and exhibited reduced migration and invasion capacities. Parallel studies performed on MCF10A cells demonstrated that miR-125a or miR-125b overexpression produced only marginal influences on the growth and migration of these non-transformed human mammary epithelial cells. These results illustrate the feasibility of using miRNAs as a therapeutic strategy to suppress oncogene expression and function.


Virology | 2011

Virus-encoded microRNAs

Adam Grundhoff; Christopher S. Sullivan

MicroRNAs (miRNAs) are the subject of enormous interest. They are small non-coding RNAs that play a regulatory role in numerous and diverse cellular processes such as immune function, apoptosis and tumorigenesis. Several virus families have been shown to encode miRNAs, and an appreciation for their roles in the viral infectious cycle continues to grow. Despite the identification of numerous (>225) viral miRNAs, an in depth functional understanding of most virus-encoded miRNAs is lacking. Here we focus on a few viral miRNAs with well-defined functions. We use these examples to extrapolate general themes of viral miRNA activities including autoregulation of viral gene expression, avoidance of host defenses, and a likely important role in maintaining latent and persistent infections. We hypothesize that although the molecular mechanisms and machinery are similar, the majority of viral miRNAs may utilize a target strategy that differs from host miRNAs. That is, many viral miRNAs may have evolved to regulate viral-encoded transcripts or networks of host genes that are unique to viral miRNAs. Included in this latter category is a likely abundant class of viral miRNAs that may regulate only one or a few principal host genes. Key steps forward for the field are discussed, including the need for additional functional studies that utilize surgical viral miRNA mutants combined with relevant models of infection.


Microbiology and Molecular Biology Reviews | 2002

T antigens of Simian virus 40: Molecular chaperones for viral replication and tumorigenesis

Christopher S. Sullivan; James M. Pipas

SUMMARY Simian virus 40 (SV40) is a small DNA tumor virus that has been extensively characterized due to its relatively simple genetic organization and the ease with which its genome is manipulated. The large and small tumor antigens (T antigens) are the major regulatory proteins encoded by SV40. Large T antigen is responsible for both viral and cellular transcriptional regulation, virion assembly, viral DNA replication, and alteration of the cell cycle. Deciphering how a single protein can perform such numerous and diverse functions has remained elusive. Recently it was established that the SV40 T antigens, including large T antigen, are molecular chaperones, each with a functioning DnaJ domain. The molecular chaperones were originally identified as bacterial genes essential for bacteriophage growth and have since been shown to be conserved in eukaryotes, participating in an array of both viral and cellular processes. This review discusses the mechanisms of DnaJ/Hsc70 interactions and how they are used by T antigen to control viral replication and tumorigenesis. The use of the DnaJ/Hsc70 system by SV40 and other viruses suggests an important role for these molecular chaperones in the regulation of the mammalian cell cycle and sheds light on the enigmatic SV40 T antigen—a most amazing molecule.


PLOS Pathogens | 2012

Virus-Encoded microRNAs: An Overview and a Look to the Future

Rodney P. Kincaid; Christopher S. Sullivan

MicroRNAs (miRNAs) are small RNAs that play important roles in the regulation of gene expression. First described as posttranscriptional gene regulators in eukaryotic hosts, virus-encoded miRNAs were later uncovered. It is now apparent that diverse virus families, most with DNA genomes, but at least some with RNA genomes, encode miRNAs. While deciphering the functions of viral miRNAs has lagged behind their discovery, recent functional studies are bringing into focus these roles. Some of the best characterized viral miRNA functions include subtle roles in prolonging the longevity of infected cells, evading the immune response, and regulating the switch to lytic infection. Notably, all of these functions are particularly important during persistent infections. Furthermore, an emerging view of viral miRNAs suggests two distinct groups exist. In the first group, viral miRNAs mimic host miRNAs and take advantage of conserved networks of host miRNA target sites. In the larger second group, viral miRNAs do not share common target sites conserved for host miRNAs, and it remains unclear what fraction of these targeted transcripts are beneficial to the virus. Recent insights from multiple virus families have revealed new ways of interacting with the host miRNA machinery including noncanonical miRNA biogenesis and new mechanisms of posttranscriptional cis gene regulation. Exciting challenges await the field, including determining the most relevant miRNA targets and parlaying our current understanding of viral miRNAs into new therapeutic strategies. To accomplish these goals and to better grasp miRNA function, new in vivo models that recapitulate persistent infections associated with viral pathogens are required.


Nature Genetics | 2009

Tandem array–based expression screens identify host mRNA targets of virus-encoded microRNAs

Joseph M. Ziegelbauer; Christopher S. Sullivan; Don Ganem

MicroRNAs (miRNAs) are short noncoding RNAs of cellular and viral origin that post-transcriptionally regulate gene expression through imperfect base pairing to their mRNA targets. Because the recognition sequences of miRNAs for their targets are short and may be discontinuous, bioinformatic prediction of targets is difficult. Here we present an approach to the experimental identification of the mRNA targets of miRNAs encoded by the Kaposis sarcoma–associated herpesvirus (KSHV). KSHV encodes 17 miRNAs, derived from 12 pre-miRNAs expressed from a single locus during viral latency. We conducted multiple screens that examine small changes in transcript abundance under different conditions of miRNA expression or inhibition and then searched the identified transcripts for seed sequence matches. Using this strategy, we identified BCLAF1, encoding Bcl2-associated factor, as a target for miR-K5, and further analysis revealed that several other KSHV miRNAs also target this gene product. Our results support that this type of expression profiling provides a potentially general approach to the identification of miRNA targets.


Proceedings of the National Academy of Sciences of the United States of America | 2012

RNA virus microRNA that mimics a B-cell oncomiR

Rodney P. Kincaid; James M. Burke; Christopher S. Sullivan

MicroRNAs (miRNAs) are small RNAs that play a regulatory role in numerous and diverse eukaryotic cellular processes. Virus-encoded miRNAs have garnered much interest, although the functions of most remain to be deciphered. To date, readily detectable, evolutionarily conserved natural miRNAs have only been identified from viruses with DNA genomes. Combined with the fact that most miRNAs are generated from endonucleolytic cleavage of longer transcripts, this finding has led to a common conception that naturally occurring RNA viruses will not encode miRNAs to avoid unproductive cleavage of their genomes or mRNAs. Here we demonstrate that the bovine leukemia virus (BLV), a retrovirus with an RNA genome, encodes a conserved cluster of miRNAs that are transcribed by RNA polymerase III (pol III). Thus, the BLV miRNAs avoid the conundrum of genome/mRNA cleavage because only the subgenomic pol III transcripts are efficiently processed into miRNAs. BLV infection is strongly associated with B-cell tumors in cattle. Because most cells in BLV-associated tumors express little viral mRNAs or proteins, exactly how BLV contributes to tumorigenesis has remained a decades-long unsolved mystery. One BLV miRNA, BLV-miR-B4, shares partial sequence identity and shared common targets with the host miRNA, miR-29. As miR-29 overexpression is associated with B-cell neoplasms that resemble BLV-associated tumors, our findings suggest a possible mechanism contributing to BLV-induced tumorigenesis.


Journal of Virology | 2008

Evolutionarily Conserved Function of a Viral MicroRNA

Gil Ju Seo; L. H. L. Fink; Bethany A. O'Hara; Walter J. Atwood; Christopher S. Sullivan

ABSTRACT MicroRNAs (miRNAs) are potent RNA regulators of gene expression. Some viruses encode miRNAs, most of unknown function. The majority of viral miRNAs are not conserved, and whether any have conserved functions remains unclear. Here, we report that two human polyomaviruses associated with serious disease in immunocompromised individuals, JC virus and BK virus, encode miRNAs with the same function as that of the monkey polyomavirus simian virus 40 miRNAs. These miRNAs are expressed late during infection to autoregulate early gene expression. We show that the miRNAs generated from both arms of the pre-miRNA hairpin are active at directing the cleavage of the early mRNAs. This finding suggests that despite multiple differences in the miRNA seed regions, the primary target (the early mRNAs) and function (the downregulation of early gene expression) are evolutionarily conserved among the primate polyomavirus-encoded miRNAs. Furthermore, we show that these miRNAs are expressed in individuals diagnosed with polyomavirus-associated disease, suggesting their potential as targets for therapeutic intervention.


Journal of Virology | 2005

A Virus-Encoded Inhibitor That Blocks RNA Interference in Mammalian Cells

Christopher S. Sullivan; Don Ganem

ABSTRACT Nodamura virus (NoV) is a small RNA virus that is infectious for insect and mammalian hosts. We have developed a highly sensitive assay of RNA interference (RNAi) in mammalian cells that shows that the NoV B2 protein functions as an inhibitor of RNAi triggered by either short hairpin RNAs or small interfering RNAs. In the cell, NoV B2 binds to pre-Dicer substrate RNA and RNA-induced silencing complex (RISC)-processed RNAs and inhibits the Dicer cleavage reaction and, potentially, one or more post-Dicer activities. In vitro, NoV B2 inhibits Dicer-mediated RNA cleavage in the absence of any other host factors and specifically binds double-stranded RNAs corresponding in structure to Dicer substrates and products. Its abilities to bind to Dicer precursor and post-Dicer RISC-processed RNAs suggest a mechanism of inhibition that is unique among known viral inhibitors of RNAi.


Nature Medicine | 2010

miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN amplified neuroblastoma

Alexander Swarbrick; Susan L. Woods; Alex D. Shaw; Asha Balakrishnan; Yuwei Phua; Akira Nguyen; Yvan Chanthery; Lionel Lim; Lesley J. Ashton; Robert L. Judson; Noelle E. Huskey; Robert Blelloch; Michelle Haber; Murray D. Norris; Peter Lengyel; Christopher S. Hackett; Thomas Preiss; Albert Chetcuti; Christopher S. Sullivan; Eric G. Marcusson; William A. Weiss; Noelle D. L'Etoile; Andrei Goga

Inactivation of the p53 tumor suppressor pathway allows cell survival in times of stress and occurs in many human cancers; however, normal embryonic stem cells and some cancers such as neuroblastoma maintain wild-type human TP53 and mouse Trp53 (referred to collectively as p53 herein). Here we describe a miRNA, miR-380-5p, that represses p53 expression via a conserved sequence in the p53 3′ untranslated region (UTR). miR-380-5p is highly expressed in mouse embryonic stem cells and neuroblastomas, and high expression correlates with poor outcome in neuroblastomas with neuroblastoma derived v-myc myelocytomatosis viral-related oncogene (MYCN) amplification. miR-380 overexpression cooperates with activated HRAS oncoprotein to transform primary cells, block oncogene-induced senescence and form tumors in mice. Conversely, inhibition of endogenous miR-380-5p in embryonic stem or neuroblastoma cells results in induction of p53, and extensive apoptotic cell death. In vivo delivery of a miR-380-5p antagonist decreases tumor size in an orthotopic mouse model of neuroblastoma. We demonstrate a new mechanism of p53 regulation in cancer and stem cells and uncover a potential therapeutic target for neuroblastoma.

Collaboration


Dive into the Christopher S. Sullivan's collaboration.

Top Co-Authors

Avatar

Rodney P. Kincaid

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

James M. Burke

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

James M. Pipas

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Chun Jung Chen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Adam Grundhoff

Heinrich Pette Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer E. Cox

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Lydia V. McClure

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Gil Ju Seo

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei Goga

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge