Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei Goga is active.

Publication


Featured researches published by Andrei Goga.


Journal of Biological Chemistry | 2007

Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b

Gary K. Scott; Andrei Goga; Dipa Bhaumik; Crystal E. Berger; Christopher S. Sullivan; Christopher C. Benz

Deregulation of micro-RNAs (miRNAs) is emerging as a major aspect of cancer etiology because their capacity to direct the translation and stability of targeted transcripts can dramatically influence cellular physiology. To explore the potential of exogenously applied miRNAs to suppress oncogenic proteins, the ERBB oncogene family was chosen with a bioinformatics search identifying targeting seed sequences for miR-125a and miR-125b within the 3′-untranslated regions of both ERBB2 and ERBB3. Using the human breast cancer cell line SKBR3 as a model for ERBB2 and ERBB3 dependence, infection of these cells with retroviral constructs expressing either miR-125a or miR-125b resulted in suppression of ERBB2 and ERBB3 at both the transcript and protein level. Luciferase constructs containing the 3′ 3′-untranslated regions of ERBB2 and ERBB3 demonstrated ∼35% less activity in miR-125a- and miR-125b-expressing cells relative to controls. Additionally, phosphorylation of ERK1/2 and AKT was suppressed in SKBR3 cells overexpressing either miR-125a or miR-125b. Consistent with suppression of both ERBB2 and ERBB3 signaling, miR-125a-or miR-125b-overexpressing SKBR3 cells were impaired in their anchorage-dependent growth and exhibited reduced migration and invasion capacities. Parallel studies performed on MCF10A cells demonstrated that miR-125a or miR-125b overexpression produced only marginal influences on the growth and migration of these non-transformed human mammary epithelial cells. These results illustrate the feasibility of using miRNAs as a therapeutic strategy to suppress oncogene expression and function.


Molecular and Cellular Biology | 1996

Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia.

Todd R. Golub; Andrei Goga; G. F. Barker; D. E. H. Afar; J. Mclaughlin; S. K. Bohlander; J .D. Rowley; O. N. Witte; D. G. Gilliland

TEL is a member of the Ets family of transcription factors which are frequently rearranged in human leukemia. The mechanism of TEL-mediated transformation, however, is unknown. We report the cloning and characterization of a chromosomal translocation associated with acute myeloid leukemia which fuses TEL to the ABL tyrosine kinase. The TEL-ABL fusion confers growth factor-independent growth to the marine hematopoietic cell line Ba/F3 and transforms Rat-1 fibroblasts and primary murine bone marrow cells. TEL-ABL is constitutively tyrosine phosphorylated and localizes to the cytoskeleton. A TEL-ABL mutant containing an ABL kinase-inactivating mutation is not constitutively phosphorylated and is nontransforming but retains cytoskeletal localization. However, constitutive phosphorylation, cytoskeletal localization, and transformation are all dependent upon a highly conserved region of TEL termed the helix-loop-helix (HLH) domain. TEL-ABL formed HLH-dependent homo-oligomers in vitro, a process critical for tyrosine kinase activation. These experiments suggest that oligomerization of TEL-ABL mediated by the TEL HLH domain is required for tyrosine kinase activation, cytoskeletal localization, and transformation. These data also suggest that oligomerization of Ets proteins through the highly conserved HLH domain may represent a previously unrecognized phenomenon.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells.

Dun Yang; Frank Buchholz; Zhongdong Huang; Andrei Goga; Chih-Ying Chen; Frances M. Brodsky; J. Michael Bishop

Small interfering RNA (siRNA) has become a powerful tool for selectively silencing gene expression in cultured mammalian cells. Because different siRNAs of the same gene have variable silencing capacities, RNA interference with synthetic siRNA is inefficient and cost intensive, especially for functional genomic studies. Here we report the use of Escherichia coli RNase III to cleave double-stranded RNA (dsRNA) into endoribonuclease-prepared siRNA (esiRNA) that can target multiple sites within an mRNA. esiRNA recapitulates the potent and specific inhibition by long dsRNA in Drosophila S2 cells. In contrast to long dsRNA, esiRNA mediates effective RNA interference without apparent nonspecific effect in cultured mammalian cells. We found that sequence-specific interference by esiRNA and the nonspecific IFN response activated by long dsRNA are independent pathways in mammalian cells. esiRNA works by eliciting the destruction of its cognate mRNA. Because of its simplicity and potency, this approach is useful for analysis of mammalian gene functions.


Science Translational Medicine | 2011

Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment

Edward Kai-Hua Chow; Xue-Qing Zhang; Mark Chen; Robert Lam; Erik Robinson; Houjin Huang; Daniel J. Schaffer; Eiji Osawa; Andrei Goga; Dean Ho

Nanodiamond-based drug delivery significantly enhanced treatment efficacy and safety in multiple chemoresistant cancer models. Nanodiamonds Are a Girl’s Best Friend When it comes to diamonds on the finger or ear lobes, bigger is better. However, for drug delivery, a small diamond may be the key to overcoming drug resistance in cancer. Nanodiamonds—tiny carbon particles—are biocompatible, can be scalably synthesized, and can bind therapeutic agents, features that make them a promising platform for drug delivery. Now, Chow et al. have found that binding nanodiamonds to the anticancer drug doxorubicin (Dox) improved therapeutic response and overcame chemoresistance in mouse models of mammary and liver cancer. Believed to act by interfering with DNA synthesis, Dox is commonly used to treat a wide variety of cancers; however, many cancers become resistant to Dox during treatment due in part to efflux of the drug from the tumor cells. In an attempt to overcome tumor chemoresistance, Chow et al. conjugated Dox to nanodiamonds as a possible means of preventing the drug from being pumped out of cells. Indeed, the nanodiamond-Dox complexes were retained better by cancer cells, decreased tumor growth, and displayed less toxicity in mammary and liver cancer mouse models when compared with unconjugated Dox. The gradual release of Dox from the nanodiamonds allowed for enhanced tumor retention and efficacy, but the small size allowed for clearance before toxicity occurred in slower-dividing healthy tissues. Thus, nanodiamonds may provide a drug delivery platform that has it all—improved safety profiles and enhanced efficacy. Like their much larger predecessor, nanodiamonds are truly diamonds of Hope. Enhancing chemotherapeutic efficiency through improved drug delivery would facilitate treatment of chemoresistant cancers, such as recurrent mammary tumors and liver cancer. One way to improve drug delivery is through the use of nanodiamond (ND) therapies, which are both scalable and biocompatible. Here, we examined the efficacy of an ND-conjugated chemotherapeutic in mouse models of liver and mammary cancer. A complex (NDX) of ND and doxorubicin (Dox) overcame drug efflux and significantly increased apoptosis and tumor growth inhibition beyond conventional Dox treatment in both murine liver tumor and mammary carcinoma models. Unmodified Dox treatment represents the clinical standard for most cancer treatment regimens, and NDX had significantly decreased toxicity in vivo compared to standard Dox treatment. Thus, ND-conjugated chemotherapy represents a promising, biocompatible strategy for overcoming chemoresistance and enhancing chemotherapy efficacy and safety.


Science | 2012

IRE1α Cleaves Select microRNAs During ER Stress to Derepress Translation of Proapoptotic Caspase-2

John-Paul Upton; Likun Wang; Dan Han; Eric S. Wang; Noelle E. Huskey; Lionel Lim; Morgan Truitt; Michael T. McManus; Davide Ruggero; Andrei Goga; Feroz R. Papa; Scott A. Oakes

To Die For The unfolded protein response (UPR) adjusts the protein folding capacity of the endoplasmic reticulum (ER) to match demand. UPR signaling requires IRE1α, an ER transmembrane kinase-endoribonuclease (RNase) that becomes activated by unfolded protein accumulation within the ER and excises a segment in XBP1 messenger RNA (mRNA) to initiate production of the homeostatic transcription factor XBP1s. However, if ER stress is irremediable, sustained IRE1α RNase activity triggers cell death. Severe ER stress activates the protease Caspase-2 as an early apoptotic switch upstream of mitochondria. However, the molecular events leading from the detection of ER stress to Caspase-2 activation are unclear. Upton et al. (p. 818, published online 4 October) now report that IRE1α is the ER stress sensor that activates Caspase-2, and does so through a mechanism involving non-coding RNAs. Under irremediable ER stress, IRE1αs RNase triggers the rapid decay of select microRNAs that normally repress translation of Caspase-2 mRNA, rapidly increasing Caspase-2 levels as the first step in its activation. Protein misfolding stimulates the destruction of microRNAs and the synthesis of an enzyme that promotes cell death. The endoplasmic reticulum (ER) is the primary organelle for folding and maturation of secretory and transmembrane proteins. Inability to meet protein-folding demand leads to “ER stress,” and activates IRE1α, an ER transmembrane kinase-endoribonuclease (RNase). IRE1α promotes adaptation through splicing Xbp1 mRNA or apoptosis through incompletely understood mechanisms. Here, we found that sustained IRE1α RNase activation caused rapid decay of select microRNAs (miRs -17, -34a, -96, and -125b) that normally repress translation of Caspase-2 mRNA, and thus sharply elevates protein levels of this initiator protease of the mitochondrial apoptotic pathway. In cell-free systems, recombinant IRE1α endonucleolytically cleaved microRNA precursors at sites distinct from DICER. Thus, IRE1α regulates translation of a proapoptotic protein through terminating microRNA biogenesis, and noncoding RNAs are part of the ER stress response.


Cell | 1995

Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene.

Andrei Goga; Jami McLaughlin; Daniel E. H. Afar; Douglas C. Saffran; Owen N. Witte

Biological function of the BCR-ABL oncogene is dependent on its activated tyrosine kinase. Mutations that inactivate the SRC homology 2 (SH2) domain, the GRB2-binding site in BCR, or the major autophosphorylation site of the kinase domain selectively disrupt downstream signaling but not tyrosine kinase activity. Despite a loss of fibroblast transformation activity, all three mutants retain the ability to render hematopoietic cell lines growth factor independent and transform primary bone marrow cells in vitro. In vivo tests of malignant potential reveal a most critical role for signals dependent on the BCR-ABL SH2 domain. The efficiency of both fibroblast and hematopoietic transformation by BCR-ABL is strongly affected by increased dosage of the SHC adapter protein, which can connect tyrosine kinase signals to RAS. The BCR-ABL oncogene activates multiple alternative pathways to RAS for hematopoietic transformation.


Nature | 2015

Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells

Devon A. Lawson; Nirav R. Bhakta; Kai Kessenbrock; Karin D. Prummel; Ying Yu; Alicia Zhou; Henok Eyob; Sanjeev Balakrishnan; Chih-Yang Wang; Paul Yaswen; Andrei Goga; Zena Werb

Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated by stem-like cells that proliferate and differentiate to produce advanced metastatic disease.


Cancer Cell | 2008

Hepatic Stem-like Phenotype and Interplay of Wnt/β-Catenin and Myc Signaling in Aggressive Childhood Liver Cancer

Stefano Cairo; Carolina Armengol; Aurélien de Reyniès; Yu Wei; Emilie Thomas; Claire-Angélique Renard; Andrei Goga; Asha Balakrishnan; Michaela Semeraro; Lionel Gresh; Marco Pontoglio; Helene Strick-Marchand; Florence Levillayer; Yann Nouët; David S. Rickman; Frédéric Gauthier; Sophie Branchereau; Laurence Brugières; Veronique Laithier; Raymonde Bouvier; Françoise Boman; Giuseppe Basso; Jean-François Michiels; Paul Hofman; Francine Arbez-Gindre; Hélène Jouan; Marie-Christine Rousselet-Chapeau; Dominique Berrebi; Luc Marcellin; François Plenat

Hepatoblastoma, the most common pediatric liver cancer, is tightly linked to excessive Wnt/beta-catenin signaling. Here, we used microarray analysis to identify two tumor subclasses resembling distinct phases of liver development and a discriminating 16-gene signature. beta-catenin activated different transcriptional programs in the two tumor types, with distinctive expression of hepatic stem/progenitor markers in immature tumors. This highly proliferating subclass was typified by gains of chromosomes 8q and 2p and upregulated Myc signaling. Myc-induced hepatoblastoma-like tumors in mice strikingly resembled the human immature subtype, and Myc downregulation in hepatoblastoma cells impaired tumorigenesis in vivo. Remarkably, the 16-gene signature discriminated invasive and metastatic hepatoblastomas and predicted prognosis with high accuracy.


Nature Medicine | 2007

Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC

Andrei Goga; Dun Yang; Aaron D. Tward; David O. Morgan; J. Michael Bishop

Tumor cells have a dysregulated cell cycle that may render their proliferation especially sensitive to the inhibition of cyclin-dependent kinases (CDKs), important regulators of cell cycle progression. We examined the effects of CDK1 inhibition in the context of different oncogenic signals. Cells transformed with MYC, but not cells transformed by a panel of other activated oncogenes, rapidly underwent apoptosis when treated with small-molecule CDK1 inhibitors. The inhibitor of apoptosis protein BIRC5 (survivin), a known CDK1 target, is required for the survival of cells overexpressing MYC. Inhibition of CDK1 rapidly downregulates survivin expression and induces MYC-dependent apoptosis. CDK1 inhibitor treatment of MYC-dependent mouse lymphoma and hepatoblastoma tumors decreased tumor growth and prolonged their survival. As there are no effective small-molecule inhibitors that selectively target the MYC pathway, we propose that CDK1 inhibition might therefore be useful in the treatment of human malignancies that overexpress MYC.


Journal of Biological Chemistry | 2009

Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion

Tzu Hsuan Huang; Fangting Wu; Gabriel B. Loeb; Ruby Hsu; Amy Heidersbach; Allison Brincat; Dai Horiuchi; Robert Jan Lebbink; Yin Yuan Mo; Andrei Goga; Michael T. McManus

The cell surface receptor tyrosine kinase HER2/neu enhances tumor metastasis. Recent studies suggest that deregulated microRNA (miRNA) expression promotes invasion and metastasis of cancer cells; we therefore explored the possibility that HER2/neu signaling induces the expression of specific miRNAs involved in this process. We identified a putative oncogenic miRNA, miR-21, whose expression is correlated with HER2/neu up-regulation and is functionally involved in HER2/neu-induced cell invasion. We show that miR-21 is up-regulated via the MAPK (ERK1/2) pathway upon stimulation of HER2/neu signaling in breast cancer cells, and overexpression of other ERK1/2 activators such as RASV12 or ID-1 is sufficient to induce miR-21 up-regulation in HER2/neu-negative breast cancer cells. Furthermore, the metastasis suppressor protein PDCD4 (programmed cell death 4) is down-regulated by miR-21 in breast cancer cells expressing HER2/neu. Our data reveal a mechanism for HER2/neu-induced cancer cell invasion via miRNA deregulation. In addition, our results identify miR-21 as a potential therapeutic target for the prevention of breast cancer invasion and metastasis.

Collaboration


Dive into the Andrei Goga's collaboration.

Top Co-Authors

Avatar

Dai Horiuchi

University of California

View shared research outputs
Top Co-Authors

Avatar

Roman Camarda

University of California

View shared research outputs
Top Co-Authors

Avatar

Alicia Y. Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar

Hope S. Rugo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Yau

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge