Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher T. Capaldo is active.

Publication


Featured researches published by Christopher T. Capaldo.


Biochimica et Biophysica Acta | 2009

Cytokine regulation of tight junctions.

Christopher T. Capaldo; Asma Nusrat

Epithelial and endothelial tight junctions act as a rate-limiting barrier between an organism and its environment. Continuing studies have highlighted the regulation of the tight junction barrier by cytokines. Elucidation of this interplay is vital for both the understanding of physiological tight junction regulation and the etiology of pathological conditions. This review will focus on recent advances in our understanding of the molecular mechanisms of tight junctions modulation by cytokines.


Journal of Experimental Medicine | 2007

JAM-A regulates permeability and inflammation in the intestine in vivo

Mike G. Laukoetter; Porfirio Nava; Winston Y. Lee; Eric A. Severson; Christopher T. Capaldo; Brian A. Babbin; Ifor R. Williams; Michael Koval; Eric Peatman; Jacquelyn A. Campbell; Terence S. Dermody; Asma Nusrat; Charles A. Parkos

Recent evidence has linked intestinal permeability to mucosal inflammation, but molecular studies are lacking. Candidate regulatory molecules localized within the tight junction (TJ) include Junctional Adhesion Molecule (JAM-A), which has been implicated in the regulation of barrier function and leukocyte migration. Thus, we analyzed the intestinal mucosa of JAM-A–deficient (JAM-A−/−) mice for evidence of enhanced permeability and inflammation. Colonic mucosa from JAM-A−/− mice had normal epithelial architecture but increased polymorphonuclear leukocyte infiltration and large lymphoid aggregates not seen in wild-type controls. Barrier function experiments revealed increased mucosal permeability, as indicated by enhanced dextran flux, and decreased transepithelial electrical resistance in JAM-A−/− mice. The in vivo observations were epithelial specific, because monolayers of JAM-A−/− epithelial cells also demonstrated increased permeability. Analyses of other TJ components revealed increased expression of claudin-10 and -15 in the colonic mucosa of JAM-A−/− mice and in JAM-A small interfering RNA–treated epithelial cells. Given the observed increase in colonic inflammation and permeability, we assessed the susceptibility of JAM-A−/− mice to the induction of colitis with dextran sulfate sodium (DSS). Although DSS-treated JAM-A−/− animals had increased clinical disease compared with controls, colonic mucosa showed less injury and increased epithelial proliferation. These findings demonstrate a complex role of JAM-A in intestinal homeostasis by regulating epithelial permeability, inflammation, and proliferation.


Immunity | 2010

Interferon-γ Regulates Intestinal Epithelial Homeostasis through Converging β-Catenin Signaling Pathways

Porfirio Nava; Stefan Koch; Mike G. Laukoetter; Winston Y. Lee; Keli Kolegraff; Christopher T. Capaldo; Neal Beeman; Caroline Addis; Kirsten Gerner-Smidt; Irmgard Neumaier; Arne Skerra; Linheng Li; Charles A. Parkos; Asma Nusrat

Inflammatory cytokines have been proposed to regulate epithelial homeostasis during intestinal inflammation. We report here that interferon-gamma (IFN-gamma) regulates the crucial homeostatic functions of cell proliferation and apoptosis through serine-threonine protein kinase AKT-beta-catenin and Wingless-Int (Wnt)-beta-catenin signaling pathways. Short-term exposure of intestinal epithelial cells to IFN-gamma resulted in activation of beta-catenin through AKT, followed by induction of the secreted Wnt inhibitor Dkk1. Consequently, we observed an increase in Dkk1-mediated apoptosis upon extended IFN-gamma treatment and reduced proliferation through depletion of the Wnt coreceptor LRP6. These effects were enhanced by tumor necrosis factor-alpha (TNF-alpha), suggesting synergism between the two cytokines. Consistent with these results, colitis in vivo was associated with decreased beta-catenin-T cell factor (TCF) signaling, loss of plasma membrane-associated LRP6, and reduced epithelial cell proliferation. Proliferation was partially restored in IFN-gamma-deficient mice. Thus, we propose that IFN-gamma regulates intestinal epithelial homeostasis by sequential regulation of converging beta-catenin signaling pathways.


Molecular Biology of the Cell | 2009

Junctional Adhesion Molecule A Interacts with Afadin and PDZ-GEF2 to Activate Rap1A, Regulate β1 Integrin Levels, and Enhance Cell Migration

Eric A. Severson; Winston Y. Lee; Christopher T. Capaldo; Asma Nusrat; Charles A. Parkos

Junctional adhesion molecule-A (JAM-A) is a transmembrane tight junction protein that has been shown to regulate barrier function and cell migration through incompletely understood mechanisms. We have previously demonstrated that JAM-A regulates cell migration by dimerization of the membrane-distal immunoglobulin-like loop and a C-terminal postsynaptic density 95/disc-large/zona occludens (PDZ) binding motif. Disruption of dimerization resulted in decreased epithelial cell migration secondary to diminished levels of beta1 integrin and active Rap1. Here, we report that JAM-A is physically and functionally associated with the PDZ domain-containing molecules Afadin and PDZ-guanine nucleotide exchange factor (GEF) 2, but not zonula occludens (ZO)-1, in epithelial cells, and these interactions mediate outside-in signaling events. Both Afadin and PDZ-GEF2 colocalized and coimmunoprecipitated with JAM-A. Furthermore, association of PDZ-GEF2 with Afadin was dependent on the expression of JAM-A. Loss of JAM-A, Afadin, or PDZ-GEF2, but not ZO-1 or PDZ-GEF1, similarly decreased cellular levels of activated Rap1, beta1 integrin protein, and epithelial cell migration. The functional effects observed were secondary to decreased levels of Rap1A because knockdown of Rap1A, but not Rap1B, resulted in decreased beta1 integrin levels and reduced cell migration. These findings suggest that JAM-A dimerization facilitates formation of a complex with Afadin and PDZ-GEF2 that activates Rap1A, which regulates beta1 integrin levels and cell migration.


Journal of Immunology | 2008

Annexin A1 Regulates Intestinal Mucosal Injury, Inflammation, and Repair

Brian A. Babbin; Mike G. Laukoetter; Porfirio Nava; Stefan Koch; Winston Y. Lee; Christopher T. Capaldo; Eric Peatman; Eric A. Severson; Roderick J. Flower; Mauro Perretti; Charles A. Parkos; Asma Nusrat

During mucosal inflammation, a complex array of proinflammatory and protective mechanisms regulates inflammation and severity of injury. Secretion of anti-inflammatory mediators is a mechanism that is critical in controlling inflammatory responses and promoting epithelial restitution and barrier recovery. AnxA1 is a potent anti-inflammatory protein that has been implicated to play a critical immune regulatory role in models of inflammation. Although AnxA1 has been shown to be secreted in intestinal mucosal tissues during inflammation, its potential role in modulating the injury/inflammatory response is not understood. In this study, we demonstrate that AnxA1-deficient animals exhibit increased susceptibility to dextran sulfate sodium (DSS)-induced colitis with greater clinical morbidity and histopathologic mucosal injury. Furthermore, impaired recovery following withdrawal of DSS administration was observed in AnxA1 (−/−) animals compared with wild-type (WT) control mice that was independent of inflammatory cell infiltration. Since AnxA1 exerts its anti-inflammatory properties through stimulation of ALX/FPRL-1, we explored the role of this receptor-ligand interaction in regulating DSS-induced colitis. Interestingly, treatment with an ALX/FPRL-1 agonist, 15-epi-lipoxin A4 reversed the enhanced sensitivity of AnxA1 (−/−) mice to DSS colitis. In contrast, 15-epi-lipoxin A4 did not significantly improve the severity of disease in WT animals. Additionally, differential expression of ALX/FPLR-1 in control and DSS-treated WT and AnxA1-deficient animals suggested a potential role for AnxA1 in regulating ALX/FPRL-1 expression under pathophysiological conditions. Together, these results support a role of endogenous AnxA1 in the protective and reparative properties of the intestinal mucosal epithelium.


F1000 Medicine Reports | 2014

Epithelial adhesive junctions

Christopher T. Capaldo; Attila E. Farkas; Asma Nusrat

Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function.


American Journal of Pathology | 2010

Tumor Suppressor Scribble Regulates Assembly of Tight Junctions in the Intestinal Epithelium

Andrei I. Ivanov; Cheryl Young; Kyle A. Den Beste; Christopher T. Capaldo; Patrick O. Humbert; Patrick Brennwald; Charles A. Parkos; Asma Nusrat

Formation of the epithelial barrier and apico-basal cell polarity represent two characteristics and mutually dependent features of differentiated epithelial monolayers. They are controlled by special adhesive structures, tight junctions (TJs), and polarity protein complexes that define the apical and the basolateral plasma membrane. The functional interplay between TJs and polarity complexes remains poorly understood. We investigated the role of Scribble, a basolateral polarity protein and known tumor suppressor, in regulating TJs in human intestinal epithelium. Scribble was enriched at TJs in T84 and SK-CO15 intestinal epithelial cell monolayers and sections of normal human colonic mucosa. siRNA-mediated knockdown of Scribble in SK-CO15 cells attenuated development of epithelial barrier and inhibited TJ reassembly independently of other basolateral polarity proteins Lgl-1 and Dlg-1. Scribble selectively co-imunoprecipitated with TJ protein ZO-1, and ZO-1 was important for Scribble recruitment to intercellular junctions and TJ reassembly. Lastly, Scribble was mislocalized from TJs and its expression down-regulated in interferon-gamma-treated T84 cell monolayers and inflamed human intestinal mucosa in vivo. We conclude that Scribble is an important regulator of TJ functions and plasticity in the intestinal epithelium. Down-regulation of Scribble may mediate mucosal barrier breakdown during intestinal inflammation.


EMBO Reports | 2011

JAM‐A regulates epithelial proliferation through Akt/β‐catenin signalling

Porfirio Nava; Christopher T. Capaldo; Stefan Koch; Keli Kolegraff; Carl R. Rankin; Attila E. Farkas; Mattie Feasel; Linheng Li; Caroline Addis; Charles A. Parkos; Asma Nusrat

Expression of the tight junction protein junctional adhesion molecule‐A (JAM‐A) has been linked to proliferation and tumour progression. However, a direct role for JAM‐A in regulating proliferative processes has not been shown. By using complementary in vivo and in vitro approaches, we demonstrate that JAM‐A restricts intestinal epithelial cell (IEC) proliferation in a dimerization‐dependent manner, by inhibiting Akt‐dependent β‐catenin activation. Furthermore, IECs from transgenic JAM‐A−/−/β‐catenin/T‐cell factor reporter mice showed enhanced β‐catenin‐dependent transcription. Finally, inhibition of Akt reversed colonic crypt hyperproliferation in JAM‐A‐deficient mice. These data establish a new link between JAM‐A and IEC homeostasis.


Molecular Biology of the Cell | 2014

Proinflammatory cytokine-induced Tight Junction remodeling through dynamic self-assembly of claudins

Christopher T. Capaldo; Attila E. Farkas; Roland S. Hilgarth; Susanne M. Krug; Mattie F. Wolf; Jeremy K. Benedik; Michael Fromm; Michael Koval; Charles A. Parkos; Asma Nusrat

Epithelial barriers are vital components of the innate immune system. This barrier is provided by tight junctions and compromised by proinflammatory cytokine signaling. Study of claudin 4 live-cell protein dynamics shows that tight junctions are self-assembling systems that undergo remodeling through heterotypic claudin incompatibility.


Mucosal Immunology | 2012

IFN-γ and TNF-α-induced GBP-1 inhibits epithelial cell proliferation through suppression of β-catenin/TCF signaling.

Christopher T. Capaldo; Neal Beeman; Roland S. Hilgarth; Porfirio Nava; Nancy A. Louis; Elisabeth Naschberger; Michael Stürzl; Charles A. Parkos; Asma Nusrat

Proinflammatory cytokines induce guanylate-binding protein 1 (GBP-1) protein expression in intestinal epithelial tissues. GBP-1 has been described as influencing a number of cellular processes important for epithelial homeostasis, including cell proliferation. However, many questions remain as to the role of GBP-1 in intestinal mucosal homeostasis. We therefore sought to investigate the function of proinflammatory cytokine-induced GBP-1 during intestinal epithelial cell proliferation. Through the use of complementary GBP-1 overexpression and small interfering RNA-mediated knockdown studies, we now show that GBP-1 acts to inhibit pro-mitogenic β-catenin/T cell factor (TCF) signaling. Interestingly, proinflammatory cytokine-induced GBP-1 was found to be a potent suppressor of β-catenin protein levels and β-catenin serine 552 phosphorylation. Neither glycogen synthase kinase 3β nor proteasomal inhibition alleviated GBP-1-mediated suppression of cell proliferation or β-catenin/TCF signaling, indicating a non-canonical mechanism of β-catenin inhibition. Together, these data show that cytokine-induced GBP-1 retards cell proliferation by forming a negative feedback loop that suppresses β-catenin/TCF signaling.

Collaboration


Dive into the Christopher T. Capaldo's collaboration.

Top Co-Authors

Avatar

Asma Nusrat

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge