Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher T. Cummings is active.

Publication


Featured researches published by Christopher T. Cummings.


Autophagy | 2012

Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy

Paola Maycotte; Suraj Aryal; Christopher T. Cummings; Jacqueline Thorburn; Michael J. Morgan; Andrew Thorburn

Chloroquine (CQ) is a 4-aminoquinoline drug used for the treatment of diverse diseases. It inhibits lysosomal acidification and therefore prevents autophagy by blocking autophagosome fusion and degradation. In cancer treatment, CQ is often used in combination with chemotherapeutic drugs and radiation because it has been shown to enhance the efficacy of tumor cell killing. Since CQ and its derivatives are the only inhibitors of autophagy that are available for use in the clinic, multiple ongoing clinical trials are currently using CQ or hydroxychloroquine (HCQ) for this purpose, either alone, or in combination with other anticancer drugs. Here we show that in the mouse breast cancer cell lines, 67NR and 4T1, autophagy is induced by the DNA damaging agent cisplatin or by drugs that selectively target autophagy regulation, the PtdIns3K inhibitor LY294002, and the mTOR inhibitor rapamycin. In combination with these drugs, CQ sensitized to these treatments, though this effect was more evident with LY294002 and rapamycin treatment. Surprisingly, however, in these experiments CQ sensitization occurred independent of autophagy inhibition, since sensitization was not mimicked by Atg12, Beclin 1 knockdown or bafilomycin treatment, and occurred even in the absence of Atg12. We therefore propose that although CQ might be helpful in combination with cancer therapeutic drugs, its sensitizing effects can occur independently of autophagy inhibition. Consequently, this possibility should be considered in the ongoing clinical trials where CQ or HCQ are used in the treatment of cancer, and caution is warranted when CQ treatment is used in cytotoxic assays in autophagy research.


Oncogene | 2013

Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer.

Rachel M. A. Linger; Rebecca A. Cohen; Christopher T. Cummings; Susan Sather; Justine Migdall-Wilson; Deryck H.G. Middleton; Xian Lu; Anna E. Barón; Wilbur A. Franklin; Daniel T. Merrick; Paul Jedlicka; Deborah DeRyckere; Lynn E. Heasley; Douglas K. Graham

Non-small cell lung cancer (NSCLC) is a prevalent and devastating disease that claims more lives than breast, prostate, colon and pancreatic cancers combined. Current research suggests that standard chemotherapy regimens have been optimized to maximal efficiency. Promising new treatment strategies involve novel agents targeting molecular aberrations present in subsets of NSCLC. We evaluated 88 human NSCLC tumors of diverse histology and identified Mer and Axl as receptor tyrosine kinases (RTKs) overexpressed in 69% and 93%, respectively, of tumors relative to surrounding normal lung tissue. Mer and Axl were also frequently overexpressed and activated in NSCLC cell lines. Ligand-dependent Mer or Axl activation stimulated MAPK, AKT and FAK signaling pathways indicating roles for these RTKs in multiple oncogenic processes. In addition, we identified a novel pro-survival pathway—involving AKT, CREB, Bcl-xL, survivin, and Bcl-2—downstream of Mer, which is differentially modulated by Axl signaling. We demonstrated that short hairpin RNA (shRNA) knockdown of Mer or Axl significantly reduced NSCLC colony formation and growth of subcutaneous xenografts in nude mice. Mer or Axl knockdown also improved in vitro NSCLC sensitivity to chemotherapeutic agents by promoting apoptosis. When comparing the effects of Mer and Axl knockdown, Mer inhibition exhibited more complete blockade of tumor growth while Axl knockdown more robustly improved chemosensitivity. These results indicate that Mer and Axl have complementary and overlapping roles in NSCLC and suggest that treatment strategies targeting both RTKs may be more effective than singly-targeted agents. Our findings validate Mer and Axl as potential therapeutic targets in NSCLC and provide justification for development of novel therapeutic compounds that selectively inhibit Mer and/or Axl.


Autophagy | 2014

Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent

Michael J. Morgan; Graciela Gamez; Christina Menke; Ariel Hernandez; Jacqueline Thorburn; Freddi Gidan; Leah Staskiewicz; Shellie Morgan; Christopher T. Cummings; Paola Maycotte; Andrew Thorburn

Chloroquine (CQ) is an antimalarial drug and late-stage inhibitor of autophagy currently FDA-approved for use in the treatment of rheumatoid arthritis and other autoimmune diseases. Based primarily on its ability to inhibit autophagy, CQ and its derivative, hydroxychloroquine, are currently being investigated as primary or adjuvant therapy in multiple clinical trials for cancer treatment. Oncogenic RAS has previously been shown to regulate autophagic flux, and cancers with high incidence of RAS mutations, such as pancreatic cancer, have been described in the literature as being particularly susceptible to CQ treatment, leading to the hypothesis that oncogenic RAS makes cancer cells dependent on autophagy. This autophagy “addiction” suggests that the mutation status of RAS in tumors could identify patients who would be more likely to benefit from CQ therapy. Here we show that RAS mutation status itself is unlikely to be beneficial in such a patient selection because oncogenic RAS does not always promote autophagy addiction. Moreover, oncogenic RAS can have opposite effects on both autophagic flux and CQ sensitivity in different cells. Finally, for any given cell type, the positive or negative effect of oncogenic RAS on autophagy does not necessarily predict whether RAS will promote or inhibit CQ-mediated toxicity. Thus, although our results confirm that different tumor cell lines display marked differences in how they respond to autophagy inhibition, these differences can occur irrespective of RAS mutation status and, in different contexts, can either promote or reduce chloroquine sensitivity of tumor cells.


Journal of Medicinal Chemistry | 2014

UNC2025, a Potent and Orally Bioavailable MER/FLT3 Dual Inhibitor

Weihe Zhang; Deborah DeRyckere; Debra Hunter; Jing Liu; Michael A. Stashko; Katherine A. Minson; Christopher T. Cummings; Trevor G. Glaros; Dianne Newton; Susan Sather; Dehui Zhang; Dmitri Kireev; William P. Janzen; H. Shelton Earp; Douglas K. Graham; Stephen V. Frye; Xiaodong Wang

We previously reported a potent small molecule Mer tyrosine kinase inhibitor UNC1062. However, its poor PK properties prevented further assessment in vivo. We report here the sequential modification of UNC1062 to address DMPK properties and yield a new potent and highly orally bioavailable Mer inhibitor, 11, capable of inhibiting Mer phosphorylation in vivo, following oral dosing as demonstrated by pharmaco-dynamic (PD) studies examining phospho-Mer in leukemic blasts from mouse bone marrow. Kinome profiling versus more than 300 kinases in vitro and cellular selectivity assessments demonstrate that 11 has similar subnanomolar activity against Flt3, an additional important target in acute myelogenous leukemia (AML), with pharmacologically useful selectivity versus other kinases examined.


European Journal of Medicinal Chemistry | 2013

UNC1062, a new and potent Mer inhibitor.

Jing Liu; Weihe Zhang; Michael A. Stashko; Deborah DeRyckere; Christopher T. Cummings; Debra Hunter; Chao Yang; Chatura N. Jayakody; Nancy Cheng; Catherine Simpson; Jacqueline Norris-Drouin; Susan Sather; Dmitri Kireev; William P. Janzen; H. Shelton Earp; Douglas K. Graham; Stephen V. Frye; Xiaodong Wang

Abnormal activation of Mer kinase has been implicated in the oncogenesis of many human cancers including acute lymphoblastic and myeloid leukemia, non-small cell lung cancer, and glioblastoma. We have discovered a new family of small molecule Mer inhibitors, pyrazolopyrimidine sulfonamides, that potently inhibit the kinase activity of Mer. Importantly, these compounds do not demonstrate significant hERG activity in the PatchXpress assay. Through structure-activity relationship studies, 35 (UNC1062) was identified as a potent (IC50 = 1.1 nM) and selective Mer inhibitor. When applied to live tumor cells, UNC1062 inhibited Mer phosphorylation and colony formation in soft agar. Given the potential of Mer as a therapeutic target, UNC1062 is a promising candidate for further drug development.


Journal of Medicinal Chemistry | 2013

Pseudo-Cyclization through Intramolecular Hydrogen Bond Enables Discovery of Pyridine Substituted Pyrimidines as New Mer Kinase Inhibitors

Weihe Zhang; Dehui Zhang; Michael A. Stashko; Deborah DeRyckere; Debra Hunter; Dmitri Kireev; Michael J. Miley; Christopher T. Cummings; Jacqueline Norris-Drouin; Wendy M. Stewart; Susan Sather; Yingqiu Zhou; Gregory Kirkpatrick; Mischa Machius; William P. Janzen; H. Shelton Earp; Douglas K. Graham; Stephen V. Frye; Xiaodong Wang

Abnormal activation or overexpression of Mer receptor tyrosine kinase has been implicated in survival signaling and chemoresistance in many human cancers. Consequently, Mer is a promising novel cancer therapeutic target. A structure-based drug design approach using a pseudo-ring replacement strategy was developed and validated to discover a new family of pyridinepyrimidine analogues as potent Mer inhibitors. Through SAR studies, 10 (UNC2250) was identified as the lead compound for further investigation based on high selectivity against other kinases and good pharmacokinetic properties. When applied to live cells, 10 inhibited steady-state phosphorylation of endogenous Mer with an IC50 of 9.8 nM and blocked ligand-stimulated activation of a chimeric EGFR-Mer protein. Treatment with 10 also resulted in decreased colony-forming potential in rhabdoid and NSCLC tumor cells, thereby demonstrating functional antitumor activity. The results provide a rationale for further investigation of this compound for therapeutic application in patients with cancer.


Molecular Cancer Therapeutics | 2013

UNC569, a Novel Small-Molecule Mer Inhibitor with Efficacy against Acute Lymphoblastic Leukemia In Vitro and In Vivo

Sandra Christoph; Deborah DeRyckere; Jennifer Schlegel; J. Kimble Frazer; Lance A. Batchelor; Alesia Y. Trakhimets; Susan Sather; Debra Hunter; Christopher T. Cummings; Jing Liu; Chao Yang; Dmitri Kireev; Catherine Simpson; Jacqueline Norris-Drouin; Emily A. Hull-Ryde; William P. Janzen; Gary L. Johnson; Xiaodong Wang; Stephen V. Frye; H. Shelton Earp; Douglas K. Graham

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. Although survival rates have improved, patients with certain biologic subtypes still have suboptimal outcomes. Current chemotherapeutic regimens are associated with short- and long-term toxicities and novel, less toxic therapeutic strategies are needed. Mer receptor tyrosine kinase is ectopically expressed in ALL patient samples and cell lines. Inhibition of Mer expression reduces prosurvival signaling, increases chemosensitivity, and delays development of leukemia in vivo, suggesting that Mer tyrosine kinase inhibitors are excellent candidates for targeted therapies. Brain and spinal tumors are the second most common malignancies in childhood. Multiple chemotherapy approaches and radiotherapies have been attempted, yet overall survival remains dismal. Mer is also abnormally expressed in atypical teratoid/rhabdoid tumors (AT/RT), providing a rationale for targeting Mer as a therapeutic strategy. We have previously described UNC569, the first small-molecule Mer inhibitor. This article describes the biochemical and biologic effects of UNC569 in ALL and AT/RT. UNC569 inhibited Mer activation and downstream signaling through ERK1/2 and AKT, determined by Western blot analysis. Treatment with UNC569 reduced proliferation/survival in liquid culture, decreased colony formation in methylcellulose/soft agar, and increased sensitivity to cytotoxic chemotherapies. MYC transgenic zebrafish with T-ALL were treated with UNC569 (4 μmol/L for two weeks). Fluorescence was quantified as indicator of the distribution of lymphoblasts, which express Mer and enhanced GFP. UNC569 induced more than 50% reduction in tumor burden compared with vehicle- and mock-treated fish. These data support further development of Mer inhibitors as effective therapies in ALL and AT/RT. Mol Cancer Ther; 12(11); 2367–77. ©2013 AACR.


Cancer Research | 2014

Abstract 1736: A novel Mer tyrosine kinase inhibitor mediates increased cell killing in combination with FGFR inhibition

Timothy P Newton; Christopher T. Cummings; Gregory Kirkpatrick; Trista K. Hinz; Deborah DeRyckere; Weihe Zhang; Xiaodong Wang; Stephen V. Frye; H. Shelton Earp; Lynn E. Heasley; Douglas K. Graham

Purpose of Study: Although therapies targeting recently identified oncogenic drivers of non-small cell lung cancer (NSCLC) are in clinical use, a significant proportion of patients still lack a molecularly-targeted therapeutic option. Therefore, there is a continued need for development of new therapeutic strategies. We recently demonstrated oncogenic roles for Mer receptor tyrosine kinase in NSCLC. More specifically, we showed aberrant expression of Mer in approximately 70% of NSCLC patient samples compared to normal lung. Additionally, shRNA-mediated Mer inhibition resulted in increased cell death, decreased colony formation in clonogenic assays, increased chemosensitivity, and decreased tumorigenesis in murine xenografts. These data validate Mer as a potential therapeutic target in NSCLC. Fibroblast growth factor receptors (FGFR) are another class of tyrosine kinases that are aberrantly expressed and function to promote tumorigenesis in NSCLC. FGFR inhibition has been validated as a therapeutic strategy in preclinical NSCLC models and several FGFR inhibitors are currently in clinical development for treatment of NSCLC. Although Mer can signal through both the MEK/ERK and PI3K/AKT pathways, in NSCLC Mer signals mainly through PI3K/AKT. Because Mer and FGFR signal primarily through complementary pathways that mediate survival and proliferation (PI3K/AKT and MEK/ERK, respectively), we hypothesized that dual inhibition of FGFR and Mer may provide a therapeutic advantage relative to inhibition of either kinase alone. In this study we investigated the interaction between a novel Mer-selective small molecule tyrosine kinase inhibitor (TKI) and AZD-4547, an FGFR TKI, in NSCLC cell lines. Methods Used: Colo699 (Mer+, FGFR+) and H226 (Mer+, FGFR+) NSCLC cells were cultured for 14 days in soft agar in the presence of Mer TKI and/or AZD-4547, alone or in combination, and colonies were stained and counted. Changes in the activity of downstream signaling pathways, including PI3K/AKT, MEK/ERK, and STAT proteins were evaluated by immunoblotting. Results and Conclusions: In the soft agar assay, Colo699 and H226 colony formation was inhibited in the presence of Mer TKI and AZD-4547, both as single agents and in combination. Importantly, concurrent treatment with Mer TKI and AZD-4547 resulted in a greater decrease in colony-formation relative to either single agent. Immunoblotting revealed increased inhibition of pro-survival signaling in cells treated with both inhibitors relative to the single agents. Taken together, these data suggest that combination therapies targeting Mer kinase and FGFR may be effective for treatment of NSCLC and indicate biochemical mechanisms by which the combination therapy may mediate increased anti-tumor activity. Citation Format: Timothy P. Newton, Christopher T. Cummings, Gregory D. Kirkpatrick, Trista K. Hinz, Deborah DeRyckere, Weihe Zhang, Xiaodong Wang, Stephen Frye, H. Shelton Earp, Lynn Heasley, Douglas K. Graham. A novel Mer tyrosine kinase inhibitor mediates increased cell killing in combination with FGFR inhibition. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 1736. doi:10.1158/1538-7445.AM2014-1736


Oncotarget | 2014

Mer590, a novel monoclonal antibody targeting MER receptor tyrosine kinase, decreases colony formation and increases chemosensitivity in non-small cell lung cancer

Christopher T. Cummings; Rachel M. A. Linger; Rebecca A. Cohen; Susan Sather; Gregory Kirkpatrick; Kurtis D. Davies; Deborah DeRyckere; H. Shelton Earp; Douglas K. Graham


Cancer Research | 2014

Abstract 1740: Development of a novel small molecule MER tyrosine kinase inhibitor with therapeutic activity in cell culture and mouse models of acute lymphoblastic leukemia

Deborah DeRyckere; Amanda A. Hill; Xiaodong Wang; Weihe Zhang; Michael A. Stashko; Susan Sather; Christopher T. Cummings; Dmitri Kireev; William P. Janzen; Stephen V. Frye; H. Shelton Earp; Douglas K. Graham

Collaboration


Dive into the Christopher T. Cummings's collaboration.

Top Co-Authors

Avatar

Douglas K. Graham

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Deborah DeRyckere

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

H. Shelton Earp

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Susan Sather

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Stephen V. Frye

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Wang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Dmitri Kireev

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Weihe Zhang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

William P. Janzen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Debra Hunter

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge