Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher T. Salatto is active.

Publication


Featured researches published by Christopher T. Salatto.


American Journal of Pathology | 2010

Antibody-Directed Myostatin Inhibition Improves Diaphragm Pathology in Young but not Adult Dystrophic mdx Mice

Kate T. Murphy; James G. Ryall; Sarah M. Snell; Lawrence Nair; René Koopman; Philip Albert Krasney; Chikwendu Ibebunjo; Kathryn S. Holden; Paula M. Loria; Christopher T. Salatto; Gordon S. Lynch

Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle wasting and weakness, leading to premature death from respiratory and/or cardiac failure. A clinically relevant question is whether myostatin inhibition can improve function of the diaphragm, which exhibits a severe and progressive pathology comparable with that in DMD. We hypothesized that antibody-directed myostatin inhibition would improve the pathophysiology of diaphragm muscle strips from young mdx mice (when the pathology is mild) and adult mdx mice (when the pathology is quite marked). Five weeks treatment with a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg/week) increased muscle mass (P < 0.05) and increased diaphragm median fiber cross-sectional area (CSA, P < 0.05) in young C57BL/10 and mdx mice, compared with saline-treated controls. PF-354 had no effect on specific force (sPo, maximum force normalized to muscle CSA) of diaphragm muscle strips from young C57BL/10 mice, but increased sPo by 84% (P < 0.05) in young mdx mice. In contrast, 8 weeks of PF-354 treatment did not improve muscle mass, median fiber CSA, collagen infiltration, or sPo of diaphragm muscle strips from adult mdx mice. PF-354 antibody-directed myostatin inhibition completely restored the functional capacity of diaphragm strips to control levels when treatment was initiated early, but not in the later stages of disease progression, suggesting that such therapies may only have a limited window of efficacy for DMD and related conditions.


Cell Metabolism | 2017

Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice.

Emily Cokorinos; Jake Delmore; Allan R. Reyes; Bina Albuquerque; Rasmus Kjøbsted; Nicolas O. Jørgensen; Jean-Luc Tran; Aditi Jatkar; Katherine Cialdea; Ryan M. Esquejo; John K. Meissen; Matthew F. Calabrese; Jason Cordes; Robert Moccia; David A. Tess; Christopher T. Salatto; Timothy M. Coskran; Alan Opsahl; Declan Flynn; Matthew Blatnik; Wenlin Li; Erick Kindt; Marc Foretz; Benoit Viollet; Jessica Ward; Ravi G. Kurumbail; Amit S. Kalgutkar; Jørgen F. P. Wojtaszewski; Kimberly O'keefe Cameron; Russell A. Miller

The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients.


Journal of Medicinal Chemistry | 2016

Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy.

Kimberly O'keefe Cameron; Daniel W. Kung; Amit S. Kalgutkar; Ravi G. Kurumbail; Russell A. Miller; Christopher T. Salatto; Jessica Ward; Jane M. Withka; Samit Kumar Bhattacharya; Markus Boehm; Kris A. Borzilleri; Janice A. Brown; Matthew F. Calabrese; Nicole Caspers; Emily Cokorinos; Edward L. Conn; Matthew S. Dowling; David J. Edmonds; Heather Eng; Dilinie P. Fernando; Richard K. Frisbie; David Hepworth; James A. Landro; Yuxia Mao; Francis Rajamohan; Allan R. Reyes; Colin R. Rose; Tim Ryder; Andre Shavnya; Aaron Smith

Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.


Bioorganic & Medicinal Chemistry Letters | 2013

The design and synthesis of a potent glucagon receptor antagonist with favorable physicochemical and pharmacokinetic properties as a candidate for the treatment of type 2 diabetes mellitus.

Angel Guzman-Perez; Jeffrey A. Pfefferkorn; Esther Cheng Yin Lee; Benjamin D. Stevens; Gary E. Aspnes; Jianwei Bian; Mary Theresa Didiuk; Kevin J. Filipski; Dianna E. Moore; Christian Perreault; Matthew F. Sammons; Meihua Tu; Janice A. Brown; Karen Atkinson; John Litchfield; Beijing Tan; Brian Samas; William J. Zavadoski; Christopher T. Salatto; Judith L. Treadway

A novel and potent small molecule glucagon receptor antagonist for the treatment of diabetes mellitus is reported. This candidate, (S)-3-[4-(1-{3,5-dimethyl-4-[4-(trifluoromethyl)-1H-pyrazol-1-yl]phenoxy}butyl)benzamido]propanoic acid, has lower molecular weight and lipophilicity than historical glucagon receptor antagonists, resulting in excellent selectivity in broad-panel screening, lower cytotoxicity, and excellent overall in vivo safety in early pre-clinical testing. Additionally, it displays low in vivo clearance and excellent oral bioavailability in both rats and dogs. In a rat glucagon challenge model, it was shown to reduce the glucagon-elicited glucose excursion in a dose-dependent manner and at a concentration consistent with its rat in vitro potency. Its properties make it an excellent candidate for further investigation.


Bioorganic & Medicinal Chemistry Letters | 2012

A novel series of glucagon receptor antagonists with reduced molecular weight and lipophilicity.

Kevin J. Filipski; Jianwei Bian; David Christopher Ebner; Esther Cheng Yin Lee; Jian-Cheng Li; Matthew F. Sammons; Stephen W. Wright; Benjamin D. Stevens; Mary Theresa Didiuk; Meihua Tu; Christian Perreault; Janice A. Brown; Karen Atkinson; Beijing Tan; Christopher T. Salatto; John Litchfield; Jeffrey A. Pfefferkorn; Angel Guzman-Perez

A novel series of glucagon receptor antagonists has been discovered. These pyrazole ethers and aminopyrazoles have lower molecular weight and increased polarity such that the molecules fall into better drug-like property space. This work has culminated in compounds 44 and 50 that were shown to have good pharmacokinetic attributes in dog, in contrast to rats, in which clearance was high; and compound 49, which demonstrated a dose-dependent reduction in glucose excursion in a rat glucagon challenge experiment.


Journal of Pharmacology and Experimental Therapeutics | 2017

Selective Activation of AMPK β1-Containing Isoforms Improves Kidney Function in a Rat Model of Diabetic Nephropathy.

Christopher T. Salatto; Russell A. Miller; Kimberly O'keefe Cameron; Emily Cokorinos; Allan R. Reyes; Jessica Ward; Matthew F. Calabrese; Ravi G. Kurumbail; Francis Rajamohan; Amit S. Kalgutkar; David A. Tess; Andre Shavnya; Nathan E. Genung; David J. Edmonds; Aditi Jatkar; Benjamin S. Maciejewski; Marina Amaro; Harmeet Gandhok; Mara Monetti; Katherine Cialdea; Eliza Bollinger; John M. Kreeger; Timothy M. Coskran; Alan Opsahl; Germaine Boucher; Morris J. Birnbaum; Paul DaSilva-Jardine; Tim Rolph

Diabetic nephropathy remains an area of high unmet medical need, with current therapies that slow down, but do not prevent, the progression of disease. A reduced phosphorylation state of adenosine monophosphate-activated protein kinase (AMPK) has been correlated with diminished kidney function in both humans and animal models of renal disease. Here, we describe the identification of novel, potent, small molecule activators of AMPK that selectively activate AMPK heterotrimers containing the β1 subunit. After confirming that human and rodent kidney predominately express AMPK β1, we explore the effects of pharmacological activation of AMPK in the ZSF1 rat model of diabetic nephropathy. Chronic administration of these direct activators elevates the phosphorylation of AMPK in the kidney, without impacting blood glucose levels, and reduces the progression of proteinuria to a greater degree than the current standard of care, angiotensin-converting enzyme inhibitor ramipril. Further analyses of urine biomarkers and kidney tissue gene expression reveal AMPK activation leads to the modulation of multiple pathways implicated in kidney injury, including cellular hypertrophy, fibrosis, and oxidative stress. These results support the need for further investigation into the potential beneficial effects of AMPK activation in kidney disease.


Journal of the American Chemical Society | 2017

Efficient Liver Targeting by Polyvalent Display of a Compact Ligand for the Asialoglycoprotein Receptor

Carlos A. Sanhueza; Michael M. Baksh; Benjamin A. Thuma; Marc D. Roy; Sanjay Dutta; Cathy Préville; Boris A. Chrunyk; Kevin Beaumont; Robert Dullea; Mark Ammirati; Shenping Liu; David F. Gebhard; James E. Finley; Christopher T. Salatto; Amanda King-Ahmad; Ingrid A. Stock; Karen Atkinson; Benjamin Reidich; Wen Lin; Rajesh Kumar; Meihua Tu; Elnaz Menhaji-Klotz; David A. Price; Spiros Liras; M. G. Finn; Vincent Mascitti

A compact and stable bicyclic bridged ketal was developed as a ligand for the asialoglycoprotein receptor (ASGPR). This compound showed excellent ligand efficiency, and the molecular details of binding were revealed by the first X-ray crystal structures of ligand-bound ASGPR. This analogue was used to make potent di- and trivalent binders of ASGPR. Extensive characterization of the function of these compounds showed rapid ASGPR-dependent cellular uptake in vitro and high levels of liver/plasma selectivity in vivo. Assessment of the biodistribution in rodents of a prototypical Alexa647-labeled trivalent conjugate showed selective hepatocyte targeting with no detectable distribution in nonparenchymal cells. This molecule also exhibited increased ASGPR-directed hepatocellular uptake and prolonged retention compared to a similar GalNAc derived trimer conjugate. Selective release in the liver of a passively permeable small-molecule cargo was achieved by retro-Diels-Alder cleavage of an oxanorbornadiene linkage, presumably upon encountering intracellular thiol. Therefore, the multicomponent construct described here represents a highly efficient delivery vehicle to hepatocytes.


EBioMedicine | 2018

Activation of Liver AMPK with PF-06409577 Corrects NAFLD and Lowers Cholesterol in Rodent and Primate Preclinical Models

Ryan M. Esquejo; Christopher T. Salatto; Jake Delmore; Bina Albuquerque; Allan R. Reyes; Yuji Shi; Rob Moccia; Emily Cokorinos; Matthew Peloquin; Mara Monetti; Jason Barricklow; Eliza Bollinger; Brennan K. Smith; Emily A. Day; Chuong Nguyen; Kieran F. Geoghegan; John M. Kreeger; Alan Opsahl; Jessica Ward; Amit S. Kalgutkar; David A. Tess; Lynne Butler; Norimitsu Shirai; Timothy F. Osborne; Gregory R. Steinberg; Morris J. Birnbaum; Kimberly O'keefe Cameron; Russell A. Miller

Dysregulation of hepatic lipid and cholesterol metabolism is a significant contributor to cardiometabolic health, resulting in excessive liver lipid accumulation and ultimately non-alcoholic steatohepatitis (NASH). Therapeutic activators of the AMP-Activated Protein Kinase (AMPK) have been proposed as a treatment for metabolic diseases; we show that the AMPK β1-biased activator PF-06409577 is capable of lowering hepatic and systemic lipid and cholesterol levels in both rodent and monkey preclinical models. PF-06409577 is able to inhibit de novo lipid and cholesterol synthesis pathways, and causes a reduction in hepatic lipids and mRNA expression of markers of hepatic fibrosis. These effects require AMPK activity in the hepatocytes. Treatment of hyperlipidemic rats or cynomolgus monkeys with PF-06409577 for 6 weeks resulted in a reduction in circulating cholesterol. Together these data suggest that activation of AMPK β1 complexes with PF-06409577 is capable of impacting multiple facets of liver disease and represents a promising strategy for the treatment of NAFLD and NASH in humans.


Angewandte Chemie | 2017

Liver-Targeted Small-Molecule Inhibitors of Proprotein Convertase Subtilisin/Kexin Type 9 Synthesis

Kim F. McClure; David W. Piotrowski; Donna N. Petersen; Liuqing Wei; Jun Xiao; Allyn T. Londregan; Adam S. Kamlet; Anne-Marie R. Dechert-Schmitt; Brian Raymer; Roger Benjamin Ruggeri; Daniel Canterbury; Chris Limberakis; Spiros Liras; Paul DaSilva-Jardine; Robert Dullea; Paula M. Loria; Benjamin Reidich; Christopher T. Salatto; Heather Eng; Emi Kimoto; Karen Atkinson; Amanda King-Ahmad; Dennis O. Scott; Kevin Beaumont; Jeffrey R. Chabot; Michael W. Bolt; Kevin Maresca; Kenneth Dahl; Ryosuke Arakawa; Akihiro Takano

Targeting of the human ribosome is an unprecedented therapeutic modality with a genome-wide selectivity challenge. A liver-targeted drug candidate is described that inhibits ribosomal synthesis of PCSK9, a lipid regulator considered undruggable by small molecules. Key to the concept was the identification of pharmacologically active zwitterions designed to be retained in the liver. Oral delivery of the poorly permeable zwitterions was achieved by prodrugs susceptible to cleavage by carboxylesterase 1. The synthesis of select tetrazole prodrugs was crucial. A cell-free in vitro translation assay containing human cell lysate and purified target mRNA fused to a reporter was used to identify active zwitterions. In vivo PCSK9 lowering by oral dosing of the candidate prodrug and quantification of the drug fraction delivered to the liver utilizing an oral positron emission tomography 18 F-isotopologue validated our liver-targeting approach.


Journal of Medicinal Chemistry | 2018

Small Molecule Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors: Hit to Lead Optimization of Systemic Agents

Allyn T. Londregan; Liuqing Wei; Jun Xiao; Nathanael G. Lintner; Donna N. Petersen; Robert Dullea; Kim F. McClure; Michael W. Bolt; Joseph Scott Warmus; Steven B. Coffey; Chris Limberakis; Julien Genovino; Benjamin A. Thuma; Kevin D. Hesp; Gary E. Aspnes; Benjamin Reidich; Christopher T. Salatto; Jeffrey R. Chabot; Jamie H. D. Cate; Spiros Liras; David W. Piotrowski

The optimization of a new class of small molecule PCSK9 mRNA translation inhibitors is described. The potency, physicochemical properties, and off-target pharmacology associated with the hit compound (1) were improved by changes to two regions of the molecule. The last step in the synthesis of the congested amide center was enabled by three different routes. Subtle structural changes yielded significant changes in pharmacology and off-target margins. These efforts led to the identification of 7l and 7n with overall profiles suitable for in vivo evaluation. In a 14-day toxicology study, 7l demonstrated an improved safety profile vs lead 7f. We hypothesize that the improved safety profile is related to diminished binding of 7l to nontranslating ribosomes and an apparent improvement in transcript selectivity due to the lower strength of 7l stalling of off-target proteins.

Collaboration


Dive into the Christopher T. Salatto's collaboration.

Researchain Logo
Decentralizing Knowledge