Christopher T. Simons
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher T. Simons.
Current Biology | 2009
Alexey A. Fushan; Christopher T. Simons; Jay Patrick Slack; Ani Manichaikul; Dennis Drayna
Human sweet taste perception is mediated by the heterodimeric G protein-coupled receptor encoded by the TAS1R2 and TAS1R3 genes. Variation in these genes has been characterized, but the functional consequences of such variation for sweet perception are unknown. We found that two C/T single-nucleotide polymorphisms (SNPs) located at positions -1572 (rs307355) and -1266 (rs35744813) upstream of the TAS1R3 coding sequence strongly correlate with human taste sensitivity to sucrose and explain 16% of population variability in perception. By using a luciferase reporter assay, we demonstrated that the T allele of each SNP results in reduced promoter activity in comparison to the C alleles, consistent with the phenotype observed in humans carrying T alleles. We also found that the distal region of the TAS1R3 promoter harbors a composite cis-acting element that has a strong silencing effect on promoter activity. We conclude that the rs307355 and rs35744813 SNPs affect gene transcription by altering the function of this regulatory element. A worldwide population survey reveals that the T alleles of rs307355 and rs35744813 occur at lowest frequencies in European populations. We propose that inherited differences in TAS1R3 transcription account for a substantial fraction of worldwide differences in human sweet taste perception.
Current Biology | 2010
Jay Patrick Slack; Anne Brockhoff; Claudia Batram; Susann Menzel; Caroline Sonnabend; Stephan Born; Maria Mercedes Galindo; Susann Kohl; Sophie Thalmann; Liliana Ostopovici-Halip; Christopher T. Simons; Ioana Maria Ungureanu; Kees Duineveld; Cristian G. Bologa; Maik Behrens; Stefan Michael Furrer; Tudor I. Oprea; Wolfgang Meyerhof
Human bitter taste is mediated by the hTAS2R family of G protein-coupled receptors. The discovery of the hTAS2Rs enables the potential to develop specific bitter receptor antagonists that could be beneficial as chemical probes to examine the role of bitter receptor function in gustatory and nongustatory tissues. In addition, they could have widespread utility in food and beverages fortified with vitamins, antioxidants, and other nutraceuticals, because many of these have unwanted bitter aftertastes. We employed a high-throughput screening approach to discover a novel bitter receptor antagonist (GIV3727) that inhibits activation of hTAS2R31 (formerly hTAS2R44) by saccharin and acesulfame K, two common artificial sweeteners. Pharmacological analyses revealed that GIV3727 likely acts as an orthosteric, insurmountable antagonist of hTAS2R31. Surprisingly, we also found that this compound could inhibit five additional hTAS2Rs, including the closely related receptor hTAS2R43. Molecular modeling and site-directed mutagenesis studies suggest that two residues in helix 7 are important for antagonist activity in hTAS2R31 and hTAS2R43. In human sensory trials, GIV3727 significantly reduced the bitterness associated with the two sulfonamide sweeteners, indicating that hTAS2R antagonists are active in vivo. Our results demonstrate that small molecule bitter receptor antagonists can effectively reduce the bitter taste qualities of foods, beverages, and pharmaceuticals.
Neuroreport | 2010
E. Carstens; Mirela Iodi Carstens; Christopher T. Simons; Steven L. Jinks
Itch is thought to be signaled by pruritogen-responsive neurons in the superficial spinal dorsal horn. Many neurons here express the substance P NK-1 receptor. We investigated whether neurotoxic destruction of spinal NK-1-expressing neurons affected itch-related scratching behavior. Rats received intracisternal substance P conjugated to saporin (SP-SAP), or saporin (SAP) only (controls), and were subsequently tested for scratching behavior elicited by intradermal 5-hydroxytryptamine. SAP controls exhibited dose-related hindlimb scratching, which was significantly attenuated in SP-SAP-treated rats. There was a virtual absence of NK-1 immunoreactive neurons in superficial laminae of the upper cervical and medullary dorsal horn in SP-SAP-treated rats. These results indicate that superficial dorsal horn neurons expressing NK-1 receptors play a key role in spinal itch transmission.
Autonomic Neuroscience: Basic and Clinical | 2000
Miklós Székely; Márta Balaskó; Vladimir A. Kulchitsky; Christopher T. Simons; Andrei I. Ivanov; Andrej A. Romanovsky
In rats, fevers induced by moderate-to-high doses of intravenous lipopolysaccharide consist of three phases (phases 1, 2 and 3) with body temperature peaks at approximately 1, 2, and 5 h postinjection, respectively. In this study, the effects of bilateral truncal subdiaphragmatic vagotomy and intraperitoneal capsaicin desensitization on febrile phases 1-3 were assessed in adult Wistar rats. Surgical vagotomy was performed approximately 30 d before the experiment; this procedure interrupts both afferent and efferent vagal fibers. Capsaicin was administered intraperitoneally in two consecutive injections (2 and 3 mg/kg, 3 h apart) 1 week prior to the experiment; this procedure desensitizes afferent fibers, primarily within the abdominal cavity, and does not lead to the known thermal effects of systemic capsaicin desensitization. At a neutral ambient temperature, the rats were given Escherichia coli lipopolysaccharide (10 microg/kg) through a preimplanted jugular catheter, and their colonic temperature wes measured by thermocouples for 7 h. The control rats exhibited the typical triphasic febrile responses. Confirming our earlier studies, subdiaphragmatic vagotomy did not affect phases 1 and 2; it did, however, result in a 2.5-fold reduction of phase 3. Capsaicin desensitization modified the febrile response differently: phases 2 and 3 were unaffected, but phase 1 disappeared. We suggest that neural afferent fibers (nonvagal but perhaps vagal as well) play an important role in the early febrile response (phase 1) by transducing peripheral pyrogenic signals to the brain. We also suggest that vagal efferent fibers are likely to participate in the later febrile response (phase 3) via an unknown mechanism.
Chemical Senses | 2010
Alexey A. Fushan; Christopher T. Simons; Jay Patrick Slack; Dennis Drayna
Variation in taste perception of different chemical substances is a well-known phenomenon in both humans and animals. Recent advances in the understanding of sweet taste signaling have identified a number of proteins involved in this signal transduction. We evaluated the hypothesis that sequence variations occurring in genes encoding taste signaling molecules can influence sweet taste perception in humans. Our population consisted of unrelated individuals (n = 160) of Caucasian, African-American, and Asian descent. Threshold and suprathreshold sensitivities of participants for sucrose were estimated using a sorting test and signal detection analysis that produced cumulative R-index area under the curve (AUC) scores. Genetic association analysis revealed significant correlation of sucrose AUC scores with genetic variation occurring in the GNAT3 gene (single point P = 10(-3) to 10(-4)), which encodes the taste-specific G(alpha) protein subunit gustducin. Subsequent sequencing identified additional GNAT3 variations having significant association with sucrose AUC scores. Collectively, GNAT3 polymorphisms explain 13% of the variation in sucrose perception. Our findings underscore the importance of common genetic variants influencing human taste perception.
Food Quality and Preference | 2002
E. Carstens; Mirela Iodi Carstens; Jean Marc Dessirier; Michael O'Mahony; Christopher T. Simons; Makoto Sudo; Satoko Sudo
Abstract This paper reviews neurophysiological and psychological studies of oral irritation elicited by chemicals in spicy foods and carbonated drinks. Oral irritant, thermal and textural sensations are conveyed to the brain by the trigeminal pathway, which is separate from the gustatory and olfactory systems. In humans, repetitive application of capsaicin, citric acid, or concentrated NaCl elicits oral irritation that grows in intensity across trials (“sensitization”). After a rest period, reapplication elicits less irritation (“self-desensitization”), but if given recurrently will eventually evoke a progressive rise in irritation (“stimulus-induced recovery”=SIR). In neurophysiological recordings from neurons in the trigeminal subnucleus caudalis (Vc), the first relay in the pathway for oral somatosensation, these irritants elicit a similar pattern of progressively increasing firing, followed after a rest by self-desensitization and SIR. In contrast, nicotine, menthol or mustard oil elicit irritation that decreases across trials (“desensitization”), a pattern also observed in Vc neuronal responses to these irritants. Carbonated water elicits an oral tingling sensation and excites Vc neurons largely through its conversion to carbonic acid. The good correspondence in temporal profiles for perception and neuronal activity supports a role for Vc neurons in the mediation of oral irritation. Finally, the development of preference for foods containing aversive chemicals is addressed. This may involve mere exposure, social reinforcement, the “thrill” of the strong sensation, or physiological reinforcement associated with satiety or release of endorphins by the painful stimulus.
Neuroscience Letters | 2005
Christopher T. Simons; Jason M. Cuellar; Justin A. Moore; Kent E. Pinkerton; Dale Uyeminami; Mirela Iodi Carstens; E. Carstens
Direct exposure of rats to tobacco smoke induces antinociception. We presently investigated if this antinociception is mediated via nicotinic and/or mu-opioid receptors. Adult male rats were surgically implanted with Alzet osmotic minipumps that delivered either saline (control), the nicotinic antagonist mecamylamine, or the opiate antagonist naltrexone (3 mg/kg/day i.v. for 21 days). Nocifensive responses were assessed on alternate days using tail-flick reflex latency (TFL) over a 3-week period. During the second week, the rats were exposed to concentrated cigarette smoke in an environmental chamber for 6 h/day for 5 consecutive days; a control group was similarly exposed to filtered cigarette smoke. Rats receiving mecamylamine and naltrexone exhibited a significant weight loss after the first day of infusion. All treatment groups additionally exhibited significant weight loss during exposure to unfiltered or filtered smoke. The saline group exhibited significant antinociception on the first day of smoke exposure with rapid development of tolerance. The mecamylamine and naltrexone groups did not exhibit significant antinociception. Controls exposed to filtered smoke (with approximately 50% lower nicotine concentration) also exhibited significant analgesia on the first exposure day with rapid development of tolerance. Exposure to high levels of cigarette smoke, or to filtered smoke with a lower nicotine concentration in the vapor phase, induces antinociception with rapid development of tolerance. The antinociceptive effect appears to be mediated via nicotinic and mu-opioid receptors.
Brain Research | 2003
Yves Boucher; Christopher T. Simons; Annick Faurion; Jean Azérad; E. Carstens
Electrophysiological methods were used to investigate the effects of trigeminal nerve stimulation or transection on responses of single gustatory neurons in the nucleus of the solitary tract (NTS) to tastants (NaCl, sucrose, citric acid, monosodium glutamate) in pentobarbital-anesthetized rats. Unilateral transection of the lingual nerve, or the mandibular branch of the trigeminal nerve, resulted in significant reductions (by 21 and 29%, respectively; P<0.01) in tastant-evoked responses, with no further effect following bilateral transection. Electrical stimulation of the central cut end of the mandibular nerve directly excited nine of 14 gustatory NTS units. For these units, central mandibular stimulation facilitated the tastant-evoked responses in six, depressed responses in three, and had no effect in five. Facilitation of tastant-evoked responses peaked 4 min after mandibular stimulation and recovered within 8 min. Electrical stimulation of the peripheral cut end of the mandibular nerve significantly reduced tastant-evoked responses in nine other NTS units, with a maximal reduction at 4 min post-stimulation followed by recovery. Stimulation of the superior cervical sympathetic ganglion did not affect NTS tastant-evoked responses. These results suggest the presence of complex central modulation of NTS neurons by trigeminal afferents, as well as a peripheral depressant effect on gustatory processing possibly mediated via neuropeptide release from trigeminal nerve endings in the tongue.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012
Elaine Liu; Kevin Lewis; Hiba Al-Saffar; Catherine M. Krall; Anju Singh; Vladimir A. Kulchitsky; Joshua J. Corrigan; Christopher T. Simons; Scott R. Petersen; Florin Marcel Musteata; Chandra Shekhar Bakshi; Andrej A. Romanovsky; Timothy J. Sellati; Alexandre A. Steiner
The natural switch from fever to hypothermia observed in the most severe cases of systemic inflammation is a phenomenon that continues to puzzle clinicians and scientists. The present study was the first to evaluate in direct experiments how the development of hypothermia vs. fever during severe forms of systemic inflammation impacts the pathophysiology of this malady and mortality rates in rats. Following administration of bacterial lipopolysaccharide (LPS; 5 or 18 mg/kg) or of a clinical Escherichia coli isolate (5 × 10(9) or 1 × 10(10) CFU/kg), hypothermia developed in rats exposed to a mildly cool environment, but not in rats exposed to a warm environment; only fever was revealed in the warm environment. Development of hypothermia instead of fever suppressed endotoxemia in E. coli-infected rats, but not in LPS-injected rats. The infiltration of the lungs by neutrophils was similarly suppressed in E. coli-infected rats of the hypothermic group. These potentially beneficial effects came with costs, as hypothermia increased bacterial burden in the liver. Furthermore, the hypotensive responses to LPS or E. coli were exaggerated in rats of the hypothermic group. This exaggeration, however, occurred independently of changes in inflammatory cytokines and prostaglandins. Despite possible costs, development of hypothermia lessened abdominal organ dysfunction and reduced overall mortality rates in both the E. coli and LPS models. By demonstrating that naturally occurring hypothermia is more advantageous than fever in severe forms of aseptic (LPS-induced) or septic (E. coli-induced) systemic inflammation, this study provides new grounds for the management of this deadly condition.
Neuroscience Letters | 2004
Kenton L. Anderson; Kent E. Pinkerton; Dale Uyeminami; Christopher T. Simons; Mirela Iodi Carstens; E. Carstens
To investigate if chronic exposure to cigarette smoke induces analgesia, rats were exposed to concentrated cigarette smoke in an environmental chamber over four successive 5-day blocks (6 h/day), with 2 smoke-free days between blocks. A control group was exposed to room air. Tail flick latencies increased significantly (analgesia) during each smoke exposure block, with a relative decline in analgesia across blocks (tolerance) and a return to control levels during the first three smoke-free interludes while remaining higher after the conclusion of the 4-week exposure period. Mechanical (von Frey) withdrawal thresholds declined over time in smoke-exposed and control groups, with the smoke-exposed group showing significantly lower thresholds. Plasma nicotine reached 95.4 +/- 32 (S.D.) ng/ml at the end of weekly smoke exposure and declined to 44.9 +/- 10.6 ng/ml 24 h after withdrawal. Rats lost weight during smoke exposure and quickly regained weight during smoke-free interludes and at the cessation of smoke exposure. Analgesia may contribute to the initiation of smoking, and rapid reversal of the analgesic effect following acute exposure may contribute to the difficulty in quitting smoking.