Christopher Trinh
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher Trinh.
Monthly Notices of the Royal Astronomical Society | 2012
Scott M. Croom; Jon Lawrence; Joss Bland-Hawthorn; Julia J. Bryant; L. M. R. Fogarty; Samuel Richards; Michael Goodwin; Tony Farrell; Stan Miziarski; Ron Heald; D. Heath Jones; Steve Lee; Matthew Colless; Sarah Brough; Andrew M. Hopkins; Amanda E. Bauer; Michael N. Birchall; Simon C. Ellis; Anthony Horton; Sergio G. Leon-Saval; Geraint F. Lewis; A. R. Lopez-Sanchez; Seong-sik Min; Christopher Trinh; Holly E. Trowland
We demonstrate a novel technology that combines the power of the multi-object spectrograph with the spatial multiplex advantage of an integral field spectrograph (IFS). The SydneyAAO (Australian Astronomical Observatory) Multi-object IFS (SAMI) is a prototype widefield system at the Anglo-Australian Telescope (AAT) that allows 13 imaging fibre bundles (‘hexabundles’) to be deployed over a 1-degree diameter field of view. Each hexabundle comprises 61 lightly fused multi-mode fibres with reduced cladding and yields a 75 per cent filling factor. Each fibre core diameter subtends 1.6 arcsec on the sky and each hexabundle has a field of view of 15 arcsec diameter. The fibres are fed to the flexible AAOmega double-beam spectrograph, which can be used at a range of spectral resolutions (R = λ/δλ ≈ 1700–13 000) over the optical spectrum (3700–9500 A). We present the first spectroscopic results obtained with SAMI for a sample of galaxies at z ≈ 0.05. We discuss the prospects of implementing hexabundles at a much higher multiplex over wider fields of view in order to carry out spatially resolved spectroscopic surveys of 10 4 –10 5 galaxies.
Nature Communications | 2011
Joss Bland-Hawthorn; Simon C. Ellis; Sergio G. Leon-Saval; Roger Haynes; Martin M. Roth; Hans-Gerd Löhmannsröben; Anthony Horton; J. G. Cuby; T. A. Birks; Jon Lawrence; Peter Gillingham; S. D. Ryder; Christopher Trinh
A long-standing and profound problem in astronomy is the difficulty in obtaining deep near-infrared observations due to the extreme brightness and variability of the night sky at these wavelengths. A solution to this problem is crucial if we are to obtain the deepest possible observations of the early Universe, as redshifted starlight from distant galaxies appears at these wavelengths. The atmospheric emission between 1,000 and 1,800 nm arises almost entirely from a forest of extremely bright, very narrow hydroxyl emission lines that varies on timescales of minutes. The astronomical community has long envisaged the prospect of selectively removing these lines, while retaining high throughput between them. Here we demonstrate such a filter for the first time, presenting results from the first on-sky tests. Its use on current 8 m telescopes and future 30 m telescopes will open up many new research avenues in the years to come.
The Astrophysical Journal | 2012
L. M. R. Fogarty; Joss Bland-Hawthorn; Scott M. Croom; Andrew W. Green; Julia J. Bryant; Jon Lawrence; Samuel Richards; James T. Allen; Amanda E. Bauer; Michael N. Birchall; Sarah Brough; Matthew Colless; Simon C. Ellis; Tony Farrell; Michael Goodwin; Ron Heald; Andrew M. Hopkins; Anthony Horton; D. Heath Jones; Steve Lee; Geraint F. Lewis; A. R. Lopez-Sanchez; Stan Miziarski; Holly E. Trowland; Sergio G. Leon-Saval; Seong-sik Min; Christopher Trinh; Gerald Cecil; Sylvain Veilleux; Kory Kreimeyer
We present the first scientific results from the Sydney-AAO Multi-Object IFS (SAMI) at the Anglo-Australian Telescope. This unique instrument deploys 13 fused fiber bundles (hexabundles) across a one-degree field of view allowing simultaneous spatially resolved spectroscopy of 13 galaxies. During the first SAMI commissioning run, targeting a single galaxy field, one object (ESO 185-G031) was found to have extended minor axis emission with ionization and kinematic properties consistent with a large-scale galactic wind. The importance of this result is twofold: (1) fiber bundle spectrographs are able to identify low surface brightness emission arising from extranuclear activity and (2) such activity may be more common than presently assumed because conventional multi-object spectrographs use single-aperture fibers and spectra from these are nearly always dominated by nuclear emission. These early results demonstrate the extraordinary potential of multi-object hexabundle spectroscopy in future galaxy surveys.
The Astronomical Journal | 2013
Christopher Trinh; Simon C. Ellis; Joss Bland-Hawthorn; Jon Lawrence; Anthony Horton; Sergio G. Leon-Saval; Keith Shortridge; Julia J. Bryant; Scott W. Case; Matthew Colless; Warrick J. Couch; Kenneth C. Freeman; Hans-Gerd Löhmannsröben; Luke Gers; Karl Glazebrook; Roger Haynes; Steve Lee; John W. O'Byrne; Stan Miziarski; Martin M. Roth; Brian Paul Schmidt; C. G. Tinney; Jessica Zheng
The near-infrared is an important part of the spectrum in astronomy, especially in cosmology because the light from objects in the early universe is redshifted to these wavelengths. However, deep near-infrared observations are extremely difficult to make from ground-based telescopes due to the bright background from the atmosphere. Nearly all of this background comes from the bright and narrow emission lines of atmospheric hydroxyl (OH) molecules. The atmospheric background cannot be easily removed from data because the brightness fluctuates unpredictably on short timescales. The sensitivity of ground-based optical astronomy far exceeds that of near-infrared astronomy because of this long-standing problem. GNOSIS is a prototype astrophotonic instrument that utilizes “OH suppression fibers” consisting of fiber Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47 and 1.7µm. GNOSIS was commissioned at the 3.9m Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibers, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput (� 60%) and excellent suppression of the skylines by the OH suppression fibers, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS+IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise dominated. OH suppression fibers could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibers paired with a fiber-fed spectrograph will at least provide a real benefit at low resolving powers. Subject headings: atmospheric effects – infrared: diffuse background – instrumentation: miscellaneous
Monthly Notices of the Royal Astronomical Society | 2012
Simon C. Ellis; Joss Bland-Hawthorn; Jon Lawrence; Anthony Horton; Christopher Trinh; Sergio G. Leon-Saval; Keith Shortridge; Julia J. Bryant; Scott W. Case; Matthew Colless; Warrick J. Couch; Kenneth C. Freeman; Luke Gers; Karl Glazebrook; Roger Haynes; Steve Lee; Hans-Gerd Löhmannsröben; John W. O'Byrne; Stan Miziarski; M. Roth; Brian Paul Schmidt; C. G. Tinney; J. Q. Zheng
The background noise between 1 and 1.8 ?mu m in ground-based instruments is dominated by atmospheric emission from hydroxyl molecules. We have built and commissioned a new instrument, the Gemini Near-infrared OH Suppression Integral Field Unit (IFU) System (GNOSIS), which suppresses 103 OH doublets between 1.47 and 1.7?mu m by a factor of 1000 with a resolving power of 10?000. We present the first results from the commissioning of GNOSIS using the IRIS2 spectrograph at the Anglo-Australian Telescope. We present measurements of sensitivity, background and throughput. The combined throughput of the GNOSIS fore-optics, grating unit and relay optics is 36?per cent, but this could be improved to 46?per cent with a more optimal design. We measure strong suppression of the OH lines, confirming that OH suppression with fibre Bragg gratings will be a powerful technology for low-resolution spectroscopy. The integrated OH suppressed background between 1.5 and 1.7 mu m is reduced by a factor of 9 compared to a control spectrum using the same system without suppression. The potential of low-resolution OH-suppressed spectroscopy is illustrated with example observations of Seyfert galaxies and a low-mass star. The GNOSIS background is dominated by detector dark current below 1.67 mu m and by thermal emission above 1.67 mu m. After subtracting these, we detect an unidentified residual interline component of 860 +/- 210 photons s-1 m-2?arcsec-2?mu m-1, comparable to previous measurements. This component is equally bright in the suppressed and control spectra. We have investigated the possible source of the interline component, but were unable to discriminate between a possible instrumental artefact and intrinsic atmospheric emission. Resolving the source of this emission is crucial for the design of fully optimized OH suppression spectrographs. The next-generation OH suppression spectrograph will be focused on resolving the source of the interline component, taking advantage of better optimization for a fibre Bragg grating feed incorporating refinements of design based on our findings from GNOSIS. We quantify the necessary improvements for an optimal OH suppressing fibre spectrograph design.
Monthly Notices of the Royal Astronomical Society | 2013
Christopher Trinh; Simon C. Ellis; Joss Bland-Hawthorn; Anthony Horton; Jon Lawrence; Sergio G. Leon-Saval
We analyse the near-infrared interline sky background, OH and O2 emission in 19 hours of H band observations with the GNOSIS OH suppression unit and the IRIS2 spectrograph at the 3.9-metre Anglo-Australian Telescope. The observations cover a range of sky positions with varying lunar conditions throughout the night. We find that the temporal behaviour of OH emission is best described by a gradual decrease during the first half of the night followed by a gradual increase during the second half of the night following the behaviour of the solar elevation angle. We measure the interline background at 1.520µm where the instrumental thermal background is very low and exploit its variation with zenith distance, time after sunset, lunar conditions, and ecliptic latitude to determine the presence of non-thermal atmospheric emission, zodiacal scattered light and scattered moonlight. Zodiacal scattered light is too faint to be detected in the summed observations. Our data are consistent with a contribution from moonlight that is �30 times greater than expected from a model based on extrapolated V band measurements. Demanding near-infrared observations during low lunar phase angles (|α| & 30deg) should be made at lunar distances ρ & 80deg if the background contribution is not to exceed 100photonss 1 m 2 µm 1 arcsec 2 . Although moonlight may dominate the interline background at very small lunar distances, the background at a resolving power of R � 2400 when using OH suppression fibres is otherwise dominated by light from an atmospheric source that fades gradually throughout the night. As such, it bears a resemblance to atmospheric OH emission suggesting that the interline background contains OH, which likely comes from unsuppressed lines which are scattered into the interline regions by the diffraction grating of the spectrograph. However, the interline background linearly correlates with both OH and O2 emission, which have different temporal behaviours suggesting it contains contributions from multiple molecular species. The absolute interline background is 560 ± 130photonss 1 m 2 µm 1 arcsec 2 at 1.520µm under dark conditions. This value is similar to previous measurements without OH suppression suggesting that the suppression with the current grating design does not affect the interline background, likely as a result of poor design due to inaccurate skyline models. Future OH suppression fibre designs will address this issue using more accurate skyline measurements taken from high resolution spectra.
Proceedings of SPIE | 2012
Seong-sik Min; Christopher Trinh; Sergio G. Leon-Saval; Nemanja Jovanovic; Peter Gillingham; Joss Bland-Hawthorn; Jon Lawrence; T. A. Birks; Martin M. Roth; Roger Haynes; L. M. R. Fogarty
We discuss the development of multi-core fiber Bragg gratings (FBGs) to be applied to astrophotonics, more specifically to near-infrared spectroscopy for ground-based instruments. The multi-core FBGs require over 100 notches to reject the OH lines in a broad wavelength range (160 nm). The number of cores of the fiber should correspond to the mode number in the multi-mode fibers and should be large enough to be able to capture a sufficient amount of light from the telescope. A phase-mask based technique is used to fabricate the multi-core FBGs.
Monthly Notices of the Royal Astronomical Society | 2013
Christopher Trinh; Elizabeth J. Barton; James S. Bullock; Michael C. Cooper; Andrew R. Zentner; Risa H. Wechsler
We have devised a method to select galaxies that are isolated in their dark matter halo (N = 1 systems) and galaxies that reside in a group of exactly two (N=2 systems). Our N=2 systems are widely separated (up to ~200 h-1 kpc), where close galaxy-galaxy interactions are not dominant. We apply our selection criteria to two volume-limited samples of galaxies from Sloan Digital Sky Survey Data Release 6 (SDSS DR6) with Mr - 5 log10 h ≤ -19 and -20 to study the effects of the environment of very sparse groups on galaxy colour. For satellite galaxies in a group of two, we find a red excess attributed to star formation quenching of 0.15 ± 0.01 and 0.14 ± 0.01 for the -19 and -20 samples, respectively, relative to isolated galaxies of the same stellar mass. Assuming N = 1 systems are the progenitors of N = 2 systems, an immediate-rapid star formation quenching scenario is inconsistent with these observations. A delayed-then-rapid star formation quenching scenario with a delay time of 3.3 and 3.7 Gyr for the -19 and -20 samples, respectively, yields a red excess prediction in agreement with the observations. The observations also reveal that central galaxies in a group of two have a slight blue excess of 0.06 ± 0.02 and 0.02 ± 0.01 for the -19 and -20 samples, respectively, relative to N = 1 populations of the same stellar mass. Our results demonstrate that even the environment of very sparse groups of luminous galaxies influence galaxy evolution and in-depth studies of these simple systems are an essential step towards understanding galaxy evolution in general.
Proceedings of SPIE | 2012
Christopher Trinh; Simon C. Ellis; Jon Lawrence; Anthony Horton; Joss Bland-Hawthorn; Sergio G. Leon-Saval; Julia J. Bryant; Scott W. Case; Matthew Colless; Warrick J. Couch; Kenneth C. Freeman; Luke Gers; Karl Glazebrook; Roger Haynes; Steve Lee; Hans-Gerd Löhmannsröben; Stan Miziarski; John W. O'Byrne; William Rambold; Martin M. Roth; Brian Paul Schmidt; Keith Shortridge; Scott Smedley; C. G. Tinney; Pascal Xavier; Jessica Zheng
GNOSIS has provided the first on-telescope demonstration of a concept to utilize complex aperioidc fiber Bragg gratings to suppress the 103 brightest atmospheric hydroxyl emission doublets between 1.47-1.7 μm. The unit is designed to be used at the 3.9-meter Anglo-Australian Telescope (AAT) feeding the IRIS2 spectrograph. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion. We present the results of laboratory and on-sky tests from instrument commissioning. These tests reveal excellent suppression performance by the gratings and high inter-notch throughput, which combine to produce high fidelity OH-free spectra.
Proceedings of SPIE | 2012
R. Haynes; T. A. Birks; J. Bland-Hawthorn; J. L. Cruz; A. Diez; Simon C. Ellis; D. Haynes; Ria G. Krämer; Brian Joseph Mangan; Seong-sik Min; Dominic F. Murphy; S. Nolte; J. C. Olaya; Jens Thomas; Christopher Trinh; Andreas Tünnermann; Christian Voigtländer
Ground based near-infrared observations have long been plagued by poor sensitivity when compared to visible observations as a result of the bright narrow line emission from atmospheric OH molecules. The GNOSIS instrument recently commissioned at the Australian Astronomical Observatory uses Photonic Lanterns in combination with individually printed single mode fibre Bragg gratings to filter out the brightest OH-emission lines between 1.47 and 1.70μm. GNOSIS, reported in a separate paper in this conference, demonstrates excellent OH-suppression, providing very “clean” filtering of the lines. It represents a major step forward in the goal to improve the sensitivity of ground based near-infrared observation to that possible at visible wavelengths, however, the filter units are relatively bulky and costly to produce. The 2nd generation fibre OH-Suppression filters based on multicore fibres are currently under development. The development aims to produce high quality, cost effective, compact and robust OH-Suppression units in a single optical fibre with numerous isolated single mode cores that replicate the function and performance of the current generation of “conventional” photonic lantern based devices. In this paper we present the early results from the multicore fibre development and multicore fibre Bragg grating imprinting process.