Christopher U.T. Hellen
SUNY Downstate Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher U.T. Hellen.
Nature Reviews Molecular Cell Biology | 2010
Richard J. Jackson; Christopher U.T. Hellen; Tatyana V. Pestova
Protein synthesis is principally regulated at the initiation stage (rather than during elongation or termination), allowing rapid, reversible and spatial control of gene expression. Progress over recent years in determining the structures and activities of initiation factors, and in mapping their interactions in ribosomal initiation complexes, have advanced our understanding of the complex translation initiation process. These developments have provided a solid foundation for studying the regulation of translation initiation by mechanisms that include the modulation of initiation factor activity (which affects almost all scanning-dependent initiation) and through sequence-specific RNA-binding proteins and microRNAs (which affect individual mRNAs).
Proceedings of the National Academy of Sciences of the United States of America | 2001
Tatyana V. Pestova; Victoria G. Kolupaeva; Ivan B. Lomakin; Evgeny V. Pilipenko; Ivan N. Shatsky; Vadim I. Agol; Christopher U.T. Hellen
Translation initiation is a complex process in which initiator tRNA, 40S, and 60S ribosomal subunits are assembled by eukaryotic initiation factors (eIFs) into an 80S ribosome at the initiation codon of mRNA. The cap-binding complex eIF4F and the factors eIF4A and eIF4B are required for binding of 43S complexes (comprising a 40S subunit, eIF2/GTP/Met-tRNAi and eIF3) to the 5′ end of capped mRNA but are not sufficient to promote ribosomal scanning to the initiation codon. eIF1A enhances the ability of eIF1 to dissociate aberrantly assembled complexes from mRNA, and these factors synergistically mediate 48S complex assembly at the initiation codon. Joining of 48S complexes to 60S subunits to form 80S ribosomes requires eIF5B, which has an essential ribosome-dependent GTPase activity and hydrolysis of eIF2-bound GTP induced by eIF5. Initiation on a few mRNAs is cap-independent and occurs instead by internal ribosomal entry. Encephalomyocarditis virus (EMCV) and hepatitis C virus epitomize distinct mechanisms of internal ribosomal entry site (IRES)-mediated initiation. The eIF4A and eIF4G subunits of eIF4F bind immediately upstream of the EMCV initiation codon and promote binding of 43S complexes. EMCV initiation does not involve scanning and does not require eIF1, eIF1A, and the eIF4E subunit of eIF4F. Initiation on some EMCV-like IRESs requires additional noncanonical initiation factors, which alter IRES conformation and promote binding of eIF4A/4G. Initiation on the hepatitis C virus IRES is even simpler: 43S complexes containing only eIF2 and eIF3 bind directly to the initiation codon as a result of specific interaction of the IRES and the 40S subunit.
Cell | 2000
Joan E. Wilson; Tatyana V. Pestova; Christopher U.T. Hellen; Peter Sarnow
Positioning of the translation initiation complex on mRNAs requires interaction between the anticodon of initiator Met-tRNA, associated with eIF2-GTP and 40S ribosomal subunit, and the cognate start codon of the mRNA. We show that an internal ribosome entry site located in the genome of cricket paralysis virus can form 80S ribosomes without initiator Met-tRNA, eIF2, or GTP hydrolysis, with a CCU triplet in the ribosomal P site and a GCU triplet in the A site. P-site mutagenesis revealed that the P site was not decoded, and protein sequence analysis showed that translation initiates at the triplet in the A site. Translational initiation from the A site of the ribosome suggests that the repertoire of translated open reading frames in eukaryotic mRNAs may be greater than anticipated.
Nature | 1998
Tatyana V. Pestova; Sergei Borukhov; Christopher U.T. Hellen
The scanning model of translation initiation is a coherent description of how eukaryotic ribosomes reach the initiation codon after being recruited to the capped 5′ end of messenger RNA. Five eukaryotic initiation factors (eIF 2, 3, 4A, 4B and 4F) with established functions have been assumed to be sufficient to mediate this process. Here we report that eIF1 and eIF1A are also both essential for translation initiation. In their absence, 43S ribosomal preinitiation complexes incubated with ATP, eIF4A, eIF4B and eIF4F bind exclusively to the cap-proximal region but are unable to reach the initiation codon. Individually, eIF1A enhances formation of this cap-proximal complex, and eIF1 weakly promotes formation of a 48S ribosomal complex at the initiation codon. These proteins act synergistically to mediate assembly of ribosomal initiation complexes at the initiation codon and dissociate aberrant complexes from the mRNA.
Nature | 2000
Tatyana V. Pestova; Ivan B. Lomakin; Joon Lee; Sang Ki Choi; Thomas E. Dever; Christopher U.T. Hellen
Initiation of eukaryotic protein synthesis begins with the ribosome separated into its 40S and 60S subunits. The 40S subunit first binds eukaryotic initiation factor (eIF) 3 and an eIF2–GTP–initiator transfer RNA ternary complex. The resulting complex requires eIF1, eIF1A, eIF4A, eIF4B and eIF4F to bind to a messenger RNA and to scan to the initiation codon. eIF5 stimulates hydrolysis of eIF2-bound GTP and eIF2 is released from the 48S complex formed at the initiation codon before it is joined by a 60S subunit to form an active 80S ribosome. Here we show that hydrolysis of eIF2-bound GTP induced by eIF5 in 48S complexes is necessary but not sufficient for the subunits to join. A second factor termed eIF5B (relative molecular mass 175,000) is essential for this process. It is a homologue of the prokaryotic initiation factor IF2 (refs 6, 7) and, like it, mediates joining of subunits and has a ribosome-dependent GTPase activity that is essential for its function.
Molecular Cell | 2010
Andrey V. Pisarev; Maxim A. Skabkin; Vera P. Pisareva; Olga V. Skabkina; Aurélie M. Rakotondrafara; Matthias W. Hentze; Christopher U.T. Hellen; Tatyana V. Pestova
After termination, eukaryotic 80S ribosomes remain associated with mRNA, P-site deacylated tRNA, and release factor eRF1 and must be recycled by dissociating these ligands and separating ribosomes into subunits. Although recycling of eukaryotic posttermination complexes (post-TCs) can be mediated by initiation factors eIF3, eIF1, and eIF1A (Pisarev et al., 2007), this energy-free mechanism can function only in a narrow range of low Mg(2+) concentrations. Here, we report that ABCE1, a conserved and essential member of the ATP-binding cassette (ABC) family of proteins, promotes eukaryotic ribosomal recycling over a wide range of Mg(2+) concentrations. ABCE1 dissociates post-TCs into free 60S subunits and mRNA- and tRNA-bound 40S subunits. It can hydrolyze ATP, GTP, UTP, and CTP. NTP hydrolysis by ABCE1 is stimulated by post-TCs and is required for its recycling activity. Importantly, ABCE1 dissociates only post-TCs obtained with eRF1/eRF3 (or eRF1 alone), but not post-TCs obtained with puromycin in eRF1s absence.
Journal of Biological Chemistry | 1998
Victoria G. Kolupaeva; Tatyana V. Pestova; Christopher U.T. Hellen; Ivan N. Shatsky
A complex of eukaryotic initiation factors (eIFs) 4A, 4E, and 4G (collectively termed eIF4F) plays a key role in recruiting mRNAs to ribosomes during translation initiation. The site of ribosomal entry onto most mRNAs is determined by interaction of the 5′-terminal cap with eIF4E; eIFs 4A and 4G may facilitate ribosomal entry by modifying mRNA structure near the cap and by interacting with ribosome-associated factors. eIF4G recruits uncapped encephalomyocarditis virus (EMCV) mRNA to ribosomes without the involvement of eIF4E by binding directly to the ∼450-nucleotide long EMCV internal ribosome entry site (IRES). We have used chemical and enzymatic probing to map the eIF4G binding site to a structural element within the J-K domain of the EMCV IRES that consists of an oligo(A) loop at the junction of three helices. The oligo(A) loop itself is not sufficient to form stable complexes with eIF4G since alteration of its structural context abolished its interaction with eIF4G. Addition of wild type ortrans-dominant mutant forms of eIF4A to binary IRES·eIF4G complexes did not further alter the pattern of chemical/enzymatic modification of the IRES.
Cell | 2007
Andrey V. Pisarev; Christopher U.T. Hellen; Tatyana V. Pestova
After translational termination, mRNA and P site deacylated tRNA remain associated with ribosomes in posttermination complexes (post-TCs), which must therefore be recycled by releasing mRNA and deacylated tRNA and by dissociating ribosomes into subunits. Recycling of bacterial post-TCs requires elongation factor EF-G and a ribosome recycling factor RRF. Eukaryotes do not encode a RRF homolog, and their mechanism of ribosomal recycling is unknown. We investigated eukaryotic recycling using post-TCs assembled on a model mRNA encoding a tetrapeptide followed by a UAA stop codon and report that initiation factors eIF3, eIF1, eIF1A, and eIF3j, a loosely associated subunit of eIF3, can promote recycling of eukaryotic post-TCs. eIF3 is the principal factor that promotes splitting of posttermination ribosomes into 60S subunits and tRNA- and mRNA-bound 40S subunits. Its activity is enhanced by eIFs 3j, 1, and 1A. eIF1 also mediates release of P site tRNA, whereas eIF3j ensures subsequent dissociation of mRNA.
Molecular Cell | 2001
Joseph Marcotrigiano; Ivan B. Lomakin; Nahum Sonenberg; Tatyana V. Pestova; Christopher U.T. Hellen; Stephen K. Burley
The X-ray structure of the phylogenetically conserved middle portion of human eukaryotic initiation factor (eIF) 4GII has been determined at 2.4 A resolution, revealing a crescent-shaped domain consisting of ten alpha helices arranged as five HEAT repeats. Together with the ATP-dependent RNA helicase eIF4A, this HEAT domain suffices for 48S ribosomal complex formation with a picornaviral RNA internal ribosome entry site (IRES). Structure-based site-directed mutagenesis was used to identify two adjacent features on the surface of this essential component of the translation initiation machinery that, respectively, bind eIF4A and a picornaviral IRES. The structural and biochemical results provide mechanistic insights into both cap-dependent and cap-independent translation initiation.
Journal of Virology | 2000
Victoria G. Kolupaeva; Tatyana V. Pestova; Christopher U.T. Hellen
ABSTRACT Hepatitis C virus translation is initiated on a ∼330-nucleotide (nt)-long internal ribosomal entry site (IRES) at the 5′ end of the genome. In this process, a 43S preinitiation complex (comprising a 40S ribosomal subunit, eukaryotic initiation factor 3 (eIF3), and a ternary [eIF2-GTP-initiator tRNA] complex) binds the IRES in a precise manner so that the initiation codon is placed at the ribosomal P site. This binding step involves specific interactions between the IRES and different components of the 43S complex. The 40S subunit and eIF3 can bind to the IRES independently; previous analyses revealed that eIF3 binds specifically to an apical half of IRES domain III. Nucleotides in the IRES that are involved in the interaction with the 40S subunit were identified by RNase footprinting and mapped to the basal half of domain III and in domain IV. Interaction sites were identified in locations that have been found to be essential for IRES function, including (i) the apical loop residues GGG266-268 in subdomain IIId and (ii) the pseudoknot. Extensive protection from RNase cleavage also occurred downstream of the pseudoknot in domain IV, flanking both sides of the initiation codon and corresponding in length to that of the mRNA-binding cleft of the 40S subunit. These results indicate that the 40S subunit makes multiple interactions with the IRES and suggest that only nucleotides in domain IV are inserted into the mRNA-binding cleft of the 40S subunit.