Christopher W. Hunt
University of New Hampshire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher W. Hunt.
Eos, Transactions American Geophysical Union | 2008
Joseph E. Salisbury; Mark L. Green; Christopher W. Hunt; Janet Campbell
Increasing atmospheric CO2 is likely to cause a corresponding increase in oceanic acidity by lowering pH by 0.20.5 pH units by the end of the 21st century [Royal Society, 2005]. In light of increasing acidity, there are growing concerns about the future health of a variety of marine organisms, particularly shellfish, which in the United States is a
Estuaries and Coasts | 2015
Scott W. Nixon; Autumn Oczkowski; Michael E. Q. Pilson; Lindsey Fields; Candace A. Oviatt; Christopher W. Hunt
1.6 billion industry. Shellfish predominantly inhabit coastal regions, and in addition to the projected stress caused by the global trend in ocean acidification, some coastal ecosystems receive persistent or episodic acid inputs as a result of interactions with river water, bottom sediments, or atmospheric deposition of terrigenous materials. Most river plumes are acidic relative to the receiving ocean, and river water is mixed extensively over the continental shelf. Moreover, the chemical nature and magnitude of discharge are changing rapidly due to climate change and land-use practices.
Estuaries and Coasts | 2016
Autumn Oczkowski; Christopher W. Hunt; Kenneth Miller; Candace A. Oviatt; Scott W. Nixon; Leslie Smith
Recent concerns about declining pH in the surface ocean in response to anthropogenic increases of carbon dioxide (CO2) in the atmosphere have raised the question of how this declining baseline of oceanic pH might interact with the much larger diel and seasonal variations of pH in coastal marine ecosystems. Nutrient enrichment, which can amplify both production and respiration, has the potential to reduce or exacerbate the impacts of ocean acidification in coastal waters. Here, we present results from a multi-year experiment in which replicate phytoplankton-based mesocosms with a 5-m deep well-mixed water column (salinity = 27–31) and intact benthic community were exposed to a gradient in daily inorganic nitrogen (N), phosphorous (P), and silica (Si) addition. We show that the response of water column pH to nutrient enrichment was the greatest during the autotrophic winter-spring period, and there was no significant decline in pH across treatments during the heterotrophic summer-fall period. We believe that the differences in response lie in the seasonal cycles of production and respiration, where spring production peaks are large and discrete, and respiration is more temperature-driven but occurs diffusely throughout the year. The observed basification associated with enhanced nutrient inputs may have consequences for phytoplankton community structure, some species of submersed aquatic vegetation, cycling of Si, and perhaps other ecological processes.
Earth System Science Data | 2013
Dorothee C. E. Bakker; Benjamin Pfeil; Karl Smith; S. Hankin; Are Olsen; S. R. Alin; C. Cosca; Sumiko Harasawa; Alex Kozyr; Yukihiro Nojiri; Kevin M O'Brien; Ute Schuster; M. Telszewski; Bronte Tilbrook; Chisato Wada; J. Akl; L. Barbero; Nicholas R. Bates; Jacqueline Boutin; Yann Bozec; Wei-Jun Cai; R. D. Castle; Francisco P. Chavez; Liqi Chen; Melissa Chierici; Kim I. Currie; H. J. W. de Baar; Wiley Evans; Richard A. Feely; Agneta Fransson
Anthropogenic nutrient enrichments and concerted efforts at nutrient reductions, compounded with the influences of climate change, are likely changing the net ecosystem production (NEP) of our coastal systems. To quantify these changes, scientists monitor a range of physical, chemical, and biological parameters sampled at various frequencies. Water column chlorophyll concentrations are arguably the most commonly used indicator of net phytoplankton production, as well as a coarse indicator of NEP. We compared parameters that estimate production, including chlorophyll, across an experimental nutrient gradient and in situ in both well-mixed and stratified estuarine environments. Data from an experiment conducted in the early 1980s in mesocosms designed to replicate a well-mixed mid-Narragansett Bay (Rhode Island) water column were used to correlate changes in chlorophyll concentrations, pH, dissolved oxygen (O2), dissolved inorganic nitrogen, phosphate, and silicate concentrations, cell counts, and 14C carbon uptake measurements across a range of nutrient enrichments. The pH, O2, nutrient, and cell count measurements reflected seasonal cycles of spring blooms followed by late summer/early fall respiration periods across nutrient enrichments. Chlorophyll concentrations were more variable and rates of 14C productivity were inconsistent with observed trends in nutrient concentrations, pH, and O2 concentrations. Similar comparisons were made using data from a well-mixed lower Narragansett Bay station and a more stratified upper Narragansett Bay station in 2007 and 2008. Trends among pH, O2, and nutrient concentration parameters were similar to those observed in the mesocosm dataset, suggesting that continuous free water measurements of pH and O2 seem to reliably reflect ecosystem metabolism and, while not perfect measures, may be underused indicators of NEP.
Earth System Science Data | 2012
Benjamin Pfeil; Are Olsen; Dorothee C. E. Bakker; S. Hankin; H. Koyuk; A. Kozyr; J. Malczyk; Ansley Manke; Nicolas Metzl; Christopher L. Sabine; J. Akl; S. R. Alin; N. R. Bates; Richard G. J. Bellerby; Alberto Borges; Jacqueline Boutin; P. Brown; Wei-Jun Cai; Francisco P. Chavez; A. Chen; C. Cosca; A.J. Fassbender; Richard A. Feely; Melchor González-Dávila; Catherine Goyet; Burke Hales; N. Hardman-Mountford; Christoph Heinze; Maria Hood; Mario Hoppema
Biogeosciences | 2011
Christopher W. Hunt; Joseph E. Salisbury; Doug Vandemark
Earth System Science Data | 2016
Dorothee C. E. Bakker; Benjamin Pfeil; Camilla S Landa; Nicolas Metzl; Kevin M O'Brien; Are Olsen; Karl Smith; Cathy Cosca; Sumiko Harasawa; Stephen D Jones; S. Nakaoka; Yukihiro Nojiri; Ute Schuster; Tobias Steinhoff; Colm Sweeney; Taro Takahashi; Bronte Tilbrook; Chisato Wada; Rik Wanninkhof; S. R. Alin; Carlos F. Balestrini; Leticia Barbero; Nicholas R. Bates; Alejandro A. Bianchi; Frédéric Kpédonou Bonou; Jacqueline Boutin; Yann Bozec; Eugene F. Burger; Wei-Jun Cai; R. D. Castle
Journal of Geophysical Research | 2011
Joseph E. Salisbury; Doug Vandemark; Janet Campbell; Christopher W. Hunt; Dominik Wisser; Nicolas Reul; Bertrand Chapron
Earth System Science Data | 2012
Christopher L. Sabine; S. Hankin; H. Koyuk; Dorothee C. E. Bakker; Benjamin Pfeil; Are Olsen; Nicolas Metzl; A. Kozyr; A.J. Fassbender; Ansley Manke; J. Malczyk; J. Akl; S. R. Alin; Richard G. J. Bellerby; Alberto Borges; Jacqueline Boutin; P. Brown; Wei-Jun Cai; Francisco P. Chavez; A. Chen; C. Cosca; Richard A. Feely; Melchor González-Dávila; Catherine Goyet; N. Hardman-Mountford; Christoph Heinze; Mario Hoppema; Christopher W. Hunt; David Hydes; Masayoshi Ishii
Estuarine Coastal and Shelf Science | 2008
Joseph E. Salisbury; Douglas Vandemark; Christopher W. Hunt; Janet Campbell; Wade R. McGillis; William H. McDowell