Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher W. Johnson is active.

Publication


Featured researches published by Christopher W. Johnson.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Lignin valorization through integrated biological funneling and chemical catalysis.

Jeffrey G. Linger; Derek R. Vardon; Michael Guarnieri; Eric M. Karp; Glendon B. Hunsinger; Mary Ann Franden; Christopher W. Johnson; Gina M. Chupka; Timothy J. Strathmann; Philip T. Pienkos; Gregg T. Beckham

Significance For nearly a century, processes have been used to convert biomass-derived carbohydrates, such as glucose, into fuels and chemicals. However, plant cell walls also contain an aromatic polymer, lignin, that has not been cost-effectively converted into fuels or commodity chemicals. With the intensive development of lignocellulosic biorefineries around the world to produce fuels and chemicals from biomass-derived carbohydrates, the amount of waste lignin will dramatically increase, warranting new lignin upgrading strategies. In nature, some microorganisms have evolved pathways to catabolize lignin-derived aromatics. Our work demonstrates that the utilization of these natural aromatic catabolic pathways may enable new routes to overcome the lignin utilization barrier that, in turn, may enable a broader slate of molecules derived from lignocellulosic biomass. Lignin is an energy-dense, heterogeneous polymer comprised of phenylpropanoid monomers used by plants for structure, water transport, and defense, and it is the second most abundant biopolymer on Earth after cellulose. In production of fuels and chemicals from biomass, lignin is typically underused as a feedstock and burned for process heat because its inherent heterogeneity and recalcitrance make it difficult to selectively valorize. In nature, however, some organisms have evolved metabolic pathways that enable the utilization of lignin-derived aromatic molecules as carbon sources. Aromatic catabolism typically occurs via upper pathways that act as a “biological funnel” to convert heterogeneous substrates to central intermediates, such as protocatechuate or catechol. These intermediates undergo ring cleavage and are further converted via the β-ketoadipate pathway to central carbon metabolism. Here, we use a natural aromatic-catabolizing organism, Pseudomonas putida KT2440, to demonstrate that these aromatic metabolic pathways can be used to convert both aromatic model compounds and heterogeneous, lignin-enriched streams derived from pilot-scale biomass pretreatment into medium chain-length polyhydroxyalkanoates (mcl-PHAs). mcl-PHAs were then isolated from the cells and demonstrated to be similar in physicochemical properties to conventional carbohydrate-derived mcl-PHAs, which have applications as bioplastics. In a further demonstration of their utility, mcl-PHAs were catalytically converted to both chemical precursors and fuel-range hydrocarbons. Overall, this work demonstrates that the use of aromatic catabolic pathways enables an approach to valorize lignin by overcoming its inherent heterogeneity to produce fuels, chemicals, and materials.


Energy and Environmental Science | 2015

Adipic acid production from lignin.

Derek R. Vardon; Mary Ann Franden; Christopher W. Johnson; Eric M. Karp; Michael Guarnieri; Jeffrey G. Linger; Michael J. Salm; Timothy J. Strathmann; Gregg T. Beckham

Lignin is an alkyl-aromatic polymer present in plant cell walls for defense, structure, and water transport. Despite exhibiting a high-energy content, lignin is typically slated for combustion in modern biorefineries due to its inherent heterogeneity and recalcitrance, whereas cellulose and hemicellulose are converted to renewable fuels and chemicals. However, it is critical for the viability of third-generation biorefineries to valorize lignin alongside polysaccharides. To that end, we employ metabolic engineering, separations, and catalysis to convert lignin-derived species into cis,cis-muconic acid, for subsequent hydrogenation to adipic acid, the latter being the most widely produced dicarboxylic acid. First, Pseudomonas putida KT2440 was metabolically engineered to funnel lignin-derived aromatics to cis,cis-muconate, which is an atom-efficient biochemical transformation. This engineered strain was employed in fed-batch biological cultivation to demonstrate a cis,cis-muconate titer of 13.5 g L−1 in 78.5 h from a model lignin-derived compound. cis,cis-Muconic acid was recovered in high purity (>97%) and yield (74%) by activated carbon treatment and crystallization (5 °C, pH 2). Pd/C was identified as a highly active catalyst for cis,cis-muconic acid hydrogenation to adipic acid with high conversion (>97%) and selectivity (>97%). Under surface reaction controlling conditions (24 °C, 24 bar, ethanol solvent), purified cis,cis-muconic acid exhibits a turnover frequency of 23–30 s−1 over Pd/C, with an apparent activation energy of 70 kJ mol−1. Lastly, cis,cis-muconate was produced with engineered P. putida grown on a biomass-derived, lignin-enriched stream, demonstrating an integrated strategy towards lignin valorization to an important commodity chemical.


Metabolic Engineering | 2015

Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin

Christopher W. Johnson; Gregg T. Beckham

Lignin represents an untapped feedstock for the production of fuels and chemicals, but its intrinsic heterogeneity makes lignin valorization a significant challenge. In nature, many aerobic organisms degrade lignin-derived aromatic molecules through conserved central intermediates including catechol and protocatechuate. Harnessing this microbial approach offers potential for lignin upgrading in modern biorefineries, but significant technical development is needed to achieve this end. Catechol and protocatechuate are subjected to aromatic ring cleavage by dioxygenase enzymes that, depending on the position, ortho or meta relative to adjacent hydroxyl groups, result in different products that are metabolized through parallel pathways for entry into the TCA cycle. These degradation pathways differ in the combination of succinate, acetyl-CoA, and pyruvate produced, the reducing equivalents regenerated, and the amount of carbon emitted as CO2-factors that will ultimately impact the yield of the targeted product. As shown here, the ring-cleavage pathways can be interchanged with one another, and such substitutions have a predictable and substantial impact on product yield. We demonstrate that replacement of the catechol ortho degradation pathway endogenous to Pseudomonas putida KT2440 with an exogenous meta-cleavage pathway from P. putida mt-2 increases yields of pyruvate produced from aromatic molecules in engineered strains. Even more dramatically, replacing the endogenous protocatechuate ortho pathway with a meta-cleavage pathway from Sphingobium sp. SYK-6 results in a nearly five-fold increase in pyruvate production. We further demonstrate the aerobic conversion of pyruvate to l-lactate with a yield of 41.1 ± 2.6% (wt/wt). Overall, this study illustrates how aromatic degradation pathways can be tuned to optimize the yield of a desired product in biological lignin upgrading.


Metabolic Engineering Communications | 2016

Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

Christopher W. Johnson; Davinia Salvachúa; Payal Khanna; Holly Smith; Darren J. Peterson; Gregg T. Beckham

The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCA decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92±0.48 g/L muconate. This study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.


Green Chemistry | 2016

cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization

Derek R. Vardon; Nicholas A. Rorrer; Davinia Salvachúa; Amy E. Settle; Christopher W. Johnson; Martin J. Menart; Nicholas S. Cleveland; Peter N. Ciesielski; K. Xerxes Steirer; John R. Dorgan; Gregg T. Beckham

cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid – the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstrates bioreactor production of muconate at 34.5 g L−1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1–9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart, thereby demonstrating a path towards bio-based nylon production via muconic acid.


Developmental Biology | 2010

Vgll2a is required for neural crest cell survival during zebrafish craniofacial development

Christopher W. Johnson; Laura Hernandez-Lagunas; Weiguo Feng; Vida Senkus Melvin; Trevor Williams; Kristin Bruk Artinger

Invertebrate and vertebrate vestigial (vg) and vestigial-like (VGLL) genes are involved in embryonic patterning and cell fate determination. These genes encode cofactors that interact with members of the Scalloped/TEAD family of transcription factors and modulate their activity. We have previously shown that, in mice, Vgll2 is differentially expressed in the developing facial prominences. In this study, we show that the zebrafish ortholog vgll2a is expressed in the pharyngeal endoderm and ectoderm surrounding the neural crest derived mesenchyme of the pharyngeal arches. Moreover, both the FGF and retinoic acid (RA) signaling pathways, which are critical components of the hierarchy controlling craniofacial patterning, regulate this domain of vgll2a expression. Consistent with these observations, vgll2a is required within the pharyngeal endoderm for NCC survival and pharyngeal cartilage development. Specifically, knockdown of Vgll2a in zebrafish embryos using Morpholino injection results in increased cell death within the pharyngeal arches, aberrant endodermal pouch morphogenesis, and hypoplastic cranial cartilages. Overall, our data reveal a novel non-cell autonomous role for Vgll2a in development of the NCC-derived vertebrate craniofacial skeleton.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The Coprinus cinereus adherin Rad9 functions in Mre11-dependent DNA repair, meiotic sister-chromatid cohesion, and meiotic homolog pairing.

W. Jason Cummings; Sandra T. Merino; Kevin G. Young; Libo Li; Christopher W. Johnson; Elizabeth A. Sierra; Miriam E. Zolan

Mitotic sister-chromatid cohesion (SCC) is known to depend in part on conserved proteins called adherins, which although necessary for SCC are not themselves localized between sister chromatids. We have examined mitotic DNA-repair and meiotic chromosome behavior in the Coprinus cinereus adherin mutant rad9-1. Genetic pathway analysis established that Rad9 functions in an Mre11-dependent pathway of DNA repair. Using fluorescence in situ hybridization, we found that the rad9-1 mutant is defective in the establishment of meiotic homolog pairing at both interstitial and subtelomeric sites but in the maintenance of pairing at only interstitial loci. To determine the role of Rad9 in meiotic SCC, we hybridized nuclear spreads simultaneously with a homolog-specific probe and a probe that recognizes both members of a homologous pair. We found that Rad9 is required for wild-type levels of meiotic SCC, and that nuclei showing loss of cohesion were twice as likely also to fail at homolog pairing. To ask whether the contribution of Rad9 to homolog pairing is solely in the establishment of SCC, we examined a rad9-1;msh5-22 double mutant, in which premeiotic DNA replication is inhibited. The msh5-22 mutation partially suppressed the deleterious effects of the rad9-1 mutation on homolog pairing; however, pairing in the double mutant still was significantly lower than in the msh5-22 single mutant control. Because the role of Rad9 in homolog pairing is not obviated by the absence of a sister chromatid, we conclude that adherins have one or more early meiotic functions distinct from the establishment of cohesion.


Development | 2011

The L6 domain tetraspanin Tm4sf4 regulates endocrine pancreas differentiation and directed cell migration

Keith R. Anderson; Ruth A. Singer; Dina Balderes; Laura Hernandez-Lagunas; Christopher W. Johnson; Kristin B. Artinger; Lori Sussel

The homeodomain transcription factor Nkx2.2 is essential for pancreatic development and islet cell type differentiation. We have identified Tm4sf4, an L6 domain tetraspanin family member, as a transcriptional target of Nkx2.2 that is greatly upregulated during pancreas development in Nkx2.2–/– mice. Tetraspanins and L6 domain proteins recruit other membrane receptors to form active signaling centers that coordinate processes such as cell adhesion, migration and differentiation. In this study, we determined that Tm4sf4 is localized to the ductal epithelial compartment and is prominent in the Ngn3+ islet progenitor cells. We also established that pancreatic tm4sf4 expression and regulation by Nkx2.2 is conserved during zebrafish development. Loss-of-function studies in zebrafish revealed that tm4sf4 inhibits α and β cell specification, but is necessary for ε cell fates. Thus, Tm4sf4 functional output opposes that of Nkx2.2. Further investigation of how Tm4sf4 functions at the cellular level in vitro showed that Tm4sf4 inhibits Rho-activated cell migration and actin organization in a ROCK-independent fashion. We propose that the primary role of Nkx2.2 is to inhibit Tm4sf4 in endocrine progenitor cells, allowing for delamination, migration and/or appropriate cell fate decisions. Identification of a role for Tm4sf4 during endocrine differentiation provides insight into islet progenitor cell behaviors and potential targetable regenerative mechanisms.


Molecular Endocrinology | 2010

Nkx2.2 Activates the Ghrelin Promoter in Pancreatic Islet Cells

Jonathon T. Hill; Christina S. Chao; Keith R. Anderson; Fernanda Kaufman; Christopher W. Johnson; Lori Sussel

Nkx2.2 is an essential regulator of pancreatic endocrine differentiation. Nkx2.2-null mice are completely devoid of beta-ells and have a large reduction of alpha- and PP cells. In the place of these islet populations, there is a corresponding increase in the ghrelin-positive epsilon-cells. Molecular studies have indicated that Nkx2.2 functions as an activator and repressor to regulate islet cell fate decisions. To determine whether Nkx2.2 is solely important for islet cell fate decisions or also has the capability to control ghrelin at the promoter level, we studied the transcriptional regulation of the ghrelin promoter within the pancreas, in vitro and in vivo. These studies demonstrate that both of the previously identified transcriptional start sites in the ghrelin promoter are active within the embryonic pancreas; however, the long transcript is preferentially up-regulated in the Nkx2.2-null pancreas. We also show that the promoter region between -619 and -488 bp upstream of the translational start site is necessary for repression of ghrelin in alphaTC1 and betaTC6 cells. Surprisingly, we also show that Nkx2.2 is able to bind to and activate the ghrelin promoter in several cell lines that do or do not express endogenous ghrelin. Together, these results suggest that the up-regulation of ghrelin expression in the Nkx2.2-null mice is not due to loss of repression of the ghrelin promoter in the nonghrelin islet populations. Furthermore, Nkx2.2 may contribute to the activation of ghrelin in mature islet epsilon-cells.


Journal of Lipid Mediators and Cell Signalling | 1997

Identification of sn-2 acetyl glycerophosphocholines in human keratinocytes

Jeffrey B. Travers; Christopher W. Johnson; Keith L. Clay; Kathleen A. Harrison; Tami Zekman; Joseph G. Morelli; Robert C. Murphy

Evidence is accumulating suggesting that platelet-activating factor plays a role in inflammatory dermatoses. Mass spectrometric methods were used to examine the molecular species of sn-2 acetyl glycerophosphocholines (GPC) synthesized by primary cultures of human neonatal foreskin-derived keratinocytes. Ionophore-stimulated keratinocytes synthesize both 1-alkyl and 1-acyl sn-2 acetyl-GPC, and the relative amounts were as follows: hexadecyl > palmitoyl > octadecyl > stearoyl at the sn-1 position. PAF synthesis in the keratinocyte-derived cell line HaCaT was inhibited by dexamethasone, suggesting that the anti-inflammatory effects of glucocorticosteroids in inflammatory dermatoses might be in part related to the inhibition of the synthesis of mediators such as PAF.

Collaboration


Dive into the Christopher W. Johnson's collaboration.

Top Co-Authors

Avatar

Gregg T. Beckham

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Derek R. Vardon

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert C. Murphy

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Davinia Salvachúa

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey G. Linger

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Payal Khanna

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eric M. Karp

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Ann Franden

National Renewable Energy Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge