Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek R. Vardon is active.

Publication


Featured researches published by Derek R. Vardon.


Bioresource Technology | 2011

Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge

Derek R. Vardon; Brajendra K. Sharma; John W. Scott; Guo Yu; Zhichao Wang; Lance Schideman; Yuanhui Zhang; Timothy J. Strathmann

This study explores the influence of wastewater feedstock composition on hydrothermal liquefaction (HTL) biocrude oil properties and physico-chemical characteristics. Spirulina algae, swine manure, and digested sludge were converted under HTL conditions (300°C, 10-12 MPa, and 30 min reaction time). Biocrude yields ranged from 9.4% (digested sludge) to 32.6% (Spirulina). Although similar higher heating values (32.0-34.7 MJ/kg) were estimated for all product oils, more detailed characterization revealed significant differences in biocrude chemistry. Feedstock composition influenced the individual compounds identified as well as the biocrude functional group chemistry. Molecular weights tracked with obdurate carbohydrate content and followed the order of Spirulina<swine manure<digested sludge. A similar trend was observed in boiling point distributions and the long branched aliphatic contents. These findings show the importance of HTL feedstock composition and highlight the need for better understanding of biocrude chemistries when considering bio-oil uses and upgrading requirements.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Lignin valorization through integrated biological funneling and chemical catalysis.

Jeffrey G. Linger; Derek R. Vardon; Michael Guarnieri; Eric M. Karp; Glendon B. Hunsinger; Mary Ann Franden; Christopher W. Johnson; Gina M. Chupka; Timothy J. Strathmann; Philip T. Pienkos; Gregg T. Beckham

Significance For nearly a century, processes have been used to convert biomass-derived carbohydrates, such as glucose, into fuels and chemicals. However, plant cell walls also contain an aromatic polymer, lignin, that has not been cost-effectively converted into fuels or commodity chemicals. With the intensive development of lignocellulosic biorefineries around the world to produce fuels and chemicals from biomass-derived carbohydrates, the amount of waste lignin will dramatically increase, warranting new lignin upgrading strategies. In nature, some microorganisms have evolved pathways to catabolize lignin-derived aromatics. Our work demonstrates that the utilization of these natural aromatic catabolic pathways may enable new routes to overcome the lignin utilization barrier that, in turn, may enable a broader slate of molecules derived from lignocellulosic biomass. Lignin is an energy-dense, heterogeneous polymer comprised of phenylpropanoid monomers used by plants for structure, water transport, and defense, and it is the second most abundant biopolymer on Earth after cellulose. In production of fuels and chemicals from biomass, lignin is typically underused as a feedstock and burned for process heat because its inherent heterogeneity and recalcitrance make it difficult to selectively valorize. In nature, however, some organisms have evolved metabolic pathways that enable the utilization of lignin-derived aromatic molecules as carbon sources. Aromatic catabolism typically occurs via upper pathways that act as a “biological funnel” to convert heterogeneous substrates to central intermediates, such as protocatechuate or catechol. These intermediates undergo ring cleavage and are further converted via the β-ketoadipate pathway to central carbon metabolism. Here, we use a natural aromatic-catabolizing organism, Pseudomonas putida KT2440, to demonstrate that these aromatic metabolic pathways can be used to convert both aromatic model compounds and heterogeneous, lignin-enriched streams derived from pilot-scale biomass pretreatment into medium chain-length polyhydroxyalkanoates (mcl-PHAs). mcl-PHAs were then isolated from the cells and demonstrated to be similar in physicochemical properties to conventional carbohydrate-derived mcl-PHAs, which have applications as bioplastics. In a further demonstration of their utility, mcl-PHAs were catalytically converted to both chemical precursors and fuel-range hydrocarbons. Overall, this work demonstrates that the use of aromatic catabolic pathways enables an approach to valorize lignin by overcoming its inherent heterogeneity to produce fuels, chemicals, and materials.


Bioresource Technology | 2012

Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis

Derek R. Vardon; Brajendra K. Sharma; Grant V. Blazina; Kishore Rajagopalan; Timothy J. Strathmann

Thermochemical conversion is a promising route for recovering energy from algal biomass. Two thermochemical processes, hydrothermal liquefaction (HTL: 300 °C and 10-12 MPa) and slow pyrolysis (heated to 450 °C at a rate of 50 °C/min), were used to produce bio-oils from Scenedesmus (raw and defatted) and Spirulina biomass that were compared against Illinois shale oil. Although both thermochemical conversion routes produced energy dense bio-oil (35-37 MJ/kg) that approached shale oil (41 MJ/kg), bio-oil yields (24-45%) and physico-chemical characteristics were highly influenced by conversion route and feedstock selection. Sharp differences were observed in the mean bio-oil molecular weight (pyrolysis 280-360 Da; HTL 700-1330 Da) and the percentage of low boiling compounds (bp<400 °C) (pyrolysis 62-66%; HTL 45-54%). Analysis of the energy consumption ratio (ECR) also revealed that for wet algal biomass (80% moisture content), HTL is more favorable (ECR 0.44-0.63) than pyrolysis (ECR 0.92-1.24) due to required water volatilization in the latter technique.


Energy and Environmental Science | 2015

Adipic acid production from lignin.

Derek R. Vardon; Mary Ann Franden; Christopher W. Johnson; Eric M. Karp; Michael Guarnieri; Jeffrey G. Linger; Michael J. Salm; Timothy J. Strathmann; Gregg T. Beckham

Lignin is an alkyl-aromatic polymer present in plant cell walls for defense, structure, and water transport. Despite exhibiting a high-energy content, lignin is typically slated for combustion in modern biorefineries due to its inherent heterogeneity and recalcitrance, whereas cellulose and hemicellulose are converted to renewable fuels and chemicals. However, it is critical for the viability of third-generation biorefineries to valorize lignin alongside polysaccharides. To that end, we employ metabolic engineering, separations, and catalysis to convert lignin-derived species into cis,cis-muconic acid, for subsequent hydrogenation to adipic acid, the latter being the most widely produced dicarboxylic acid. First, Pseudomonas putida KT2440 was metabolically engineered to funnel lignin-derived aromatics to cis,cis-muconate, which is an atom-efficient biochemical transformation. This engineered strain was employed in fed-batch biological cultivation to demonstrate a cis,cis-muconate titer of 13.5 g L−1 in 78.5 h from a model lignin-derived compound. cis,cis-Muconic acid was recovered in high purity (>97%) and yield (74%) by activated carbon treatment and crystallization (5 °C, pH 2). Pd/C was identified as a highly active catalyst for cis,cis-muconic acid hydrogenation to adipic acid with high conversion (>97%) and selectivity (>97%). Under surface reaction controlling conditions (24 °C, 24 bar, ethanol solvent), purified cis,cis-muconic acid exhibits a turnover frequency of 23–30 s−1 over Pd/C, with an apparent activation energy of 70 kJ mol−1. Lastly, cis,cis-muconate was produced with engineered P. putida grown on a biomass-derived, lignin-enriched stream, demonstrating an integrated strategy towards lignin valorization to an important commodity chemical.


Green Chemistry | 2015

Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria

Davinia Salvachúa; Eric M. Karp; Claire T. Nimlos; Derek R. Vardon; Gregg T. Beckham

Lignin represents an untapped resource in lignocellulosic biomass, primarily due to its recalcitrance to depolymerization and its intrinsic heterogeneity. In Nature, microorganisms have evolved mechanisms to both depolymerize lignin using extracellular oxidative enzymes and to uptake the aromatic species generated during depolymerization for carbon and energy sources. The ability of microbes to conduct both of these processes simultaneously could enable a Consolidated Bioprocessing concept to be applied to lignin, similar to what is done today with polysaccharide conversion to ethanol via ethanologenic, cellulolytic microbes. To that end, here we examine the ability of 14 bacteria to secrete ligninolytic enzymes, depolymerize lignin, uptake aromatic and other compounds present in a biomass-derived, lignin-enriched stream, and, under nitrogen-limiting conditions, accumulate intracellular carbon storage compounds that can be used as fuel, chemical, or material precursors. In shake flask conditions using a substrate produced during alkaline pretreatment, we demonstrate that up to nearly 30% of the initial lignin can be depolymerized and catabolized by a subset of bacteria. In particular, Amycolatopsis sp., two Pseudomonas putida strains, Acinetobacter ADP1, and Rhodococcus jostii are able to depolymerize high molecular weight lignin species and catabolize a significant portion of the low molecular weight aromatics, thus representing good starting hosts for metabolic engineering. This study also provides a comprehensive set of experimental tools to simultaneously study lignin depolymerization and aromatic catabolism in bacteria, and provides a foundation towards the concept of Lignin Consolidated Bioprocessing, which may eventually be an important route for biological lignin valorization.


Green Chemistry | 2015

Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

Shijie Leow; John R. Witter; Derek R. Vardon; Brajendra K. Sharma; Jeremy S. Guest; Timothy J. Strathmann

Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and other conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. The FA model was linked to an upstream cultivation model (Phototrophic Process Model), providing for the first time an integrated modeling framework to overcome a critical barrier to microalgae-derived HTL biofuels and enable predictive analysis of the overall microalgal-to-biofuel process.


Green Chemistry | 2016

cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization

Derek R. Vardon; Nicholas A. Rorrer; Davinia Salvachúa; Amy E. Settle; Christopher W. Johnson; Martin J. Menart; Nicholas S. Cleveland; Peter N. Ciesielski; K. Xerxes Steirer; John R. Dorgan; Gregg T. Beckham

cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid – the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstrates bioreactor production of muconate at 34.5 g L−1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1–9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart, thereby demonstrating a path towards bio-based nylon production via muconic acid.


Green Chemistry | 2017

Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds

Amy E. Settle; Laura Berstis; Nicholas A. Rorrer; Yuriy Román-Leshkov; Gregg T. Beckham; Ryan M. Richards; Derek R. Vardon

In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such, this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Bronsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. Lastly, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.


Green Chemistry | 2017

Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites

Nicholas A. Rorrer; Derek R. Vardon; John R. Dorgan; Erica Gjersing; Gregg T. Beckham

Nearly all polymer resins used to manufacture critically important fiber reinforced polymer (FRP) composites are petroleum sourced. In particular, unsaturated polyesters (UPEs) are widely used as matrix materials and are often based on maleic anhydride, a four-carbon, unsaturated diacid. Typically, maleic anhydride is added as a reactant in a conventional step-growth polymerization to incorporate unsaturation throughout the backbone of the UPE, which is then dissolved in a reactive diluent (styrene is widely used) infused into a fiber mat and cross-linked. Despite widespread historical use, styrene has come under scrutiny due to environmental and health concerns; in addition, many conceivable UPEs are not soluble in styrene. In this study, we demonstrate that renewably-sourced monomers offer the ability to overcome these issues and improve overall composite performance. The properties of poly(butylene succinate)-based UPEs incorporating maleic anhydride are used as a baseline for comparison against UPEs derived from fumaric acid, cis,cis-muconate, and trans,trans-muconate, all of which can be obtained biologically. The resulting biobased UPEs are combined with styrene, methacrylic acid, or a mixture of methacrylic acid and cinnaminic acid, infused into woven fiberglass and cross-linked with the addition of a free-radical initiator and heat. This process produces a series of partially or fully bio-derived composites. Overall, the muconate-containing UPE systems exhibit a more favorable property suite than the maleic anhydride and fumaric acid counterparts. In all cases at the same olefinic monomer loading, the trans,trans-muconate polymers exhibit the highest shear modulus, storage modulus, and glass transition temperature indicating stronger and more thermally resistant materials. They also exhibit the lowest loss modulus indicating a greater adhesion to the glass fibers. The use of a mixture of methacrylic and cinnaminic acid as the reactive diluent results in a FRP composite with properties that can be matched to reinforced composites prepared with styrene. Significantly, at one-third the monomer loading (corresponding to two-thirds the number of double bonds), trans,trans-muconate produces approximately the same storage modulus and glass transition temperature as maleic anhydride, while exhibiting a superior loss modulus. Overall, this work demonstrates the novel synthesis of performance-differentiated FRP composites using renewably-sourced monomers.


Science | 2017

Renewable acrylonitrile production

Eric M. Karp; Todd R. Eaton; Violeta Sànchez i Nogué; Vassili Vorotnikov; Mary J. Biddy; Eric Tan; David G. Brandner; Robin M. Cywar; Rongming Liu; Lorenz P. Manker; William E. Michener; Michelle Gilhespy; Zinovia Skoufa; Michael J. Watson; O. Stanley Fruchey; Derek R. Vardon; Ryan T. Gill; Adam Bratis; Gregg T. Beckham

A sweet source to make acrylonitrile Much of the attention directed toward displacing petroleum feedstocks with biomass has focused on fuels. However, there are also numerous opportunities in commodity chemical production. One such candidate is acrylonitrile, a precursor to a wide variety of plastics and fibers that is currently derived from propylene. Karp et al. efficiently manufactured this compound from an ester (ethyl 3-hydroxypropanoate) that can be sourced renewably from sugars. The process relies on inexpensive titania as a catalyst and avoids the side production of cyanide that accompanies propylene oxidation. Science, this issue p. 1307 Titania catalyzes efficient production of a commodity chemical using an ester sourced from sugars. Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 ± 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.

Collaboration


Dive into the Derek R. Vardon's collaboration.

Top Co-Authors

Avatar

Gregg T. Beckham

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher W. Johnson

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eric M. Karp

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy E. Settle

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davinia Salvachúa

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffrey G. Linger

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

John R. Dorgan

Colorado School of Mines

View shared research outputs
Researchain Logo
Decentralizing Knowledge