Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher W. Leonard is active.

Publication


Featured researches published by Christopher W. Leonard.


Nature | 2009

Architecture and secondary structure of an entire HIV-1 RNA genome.

Joseph Watts; Kristen K. Dang; Robert J. Gorelick; Christopher W. Leonard; Julian W. Bess; Ronald Swanstrom; Christina L. Burch; Kevin M. Weeks

Single-stranded RNA viruses encompass broad classes of infectious agents and cause the common cold, cancer, AIDS and other serious health threats. Viral replication is regulated at many levels, including the use of conserved genomic RNA structures. Most potential regulatory elements in viral RNA genomes are uncharacterized. Here we report the structure of an entire HIV-1 genome at single nucleotide resolution using SHAPE, a high-throughput RNA analysis technology. The genome encodes protein structure at two levels. In addition to the correspondence between RNA and protein primary sequences, a correlation exists between high levels of RNA structure and sequences that encode inter-domain loops in HIV proteins. This correlation suggests that RNA structure modulates ribosome elongation to promote native protein folding. Some simple genome elements previously shown to be important, including the ribosomal gag-pol frameshift stem-loop, are components of larger RNA motifs. We also identify organizational principles for unstructured RNA regions, including splice site acceptors and hypervariable regions. These results emphasize that the HIV-1 genome and, potentially, many coding RNAs are punctuated by previously unrecognized regulatory motifs and that extensive RNA structure constitutes an important component of the genetic code.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots

Christine E. Hajdin; Stanislav Bellaousov; Wayne Huggins; Christopher W. Leonard; David H. Mathews; Kevin M. Weeks

A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.


Journal of the American Chemical Society | 2009

Native-like RNA tertiary structures using a sequence-encoded cleavage agent and refinement by discrete molecular dynamics.

Costin M. Gherghe; Christopher W. Leonard; Feng Ding; Nikolay V. Dokholyan; Kevin M. Weeks

The difficulty of analyzing higher order RNA structure, especially for folding intermediates and for RNAs whose functions require domains that are conformationally flexible, emphasizes the need for new approaches for modeling RNA tertiary structure accurately. Here, we report a concise approach that makes use of facile RNA structure probing experiments that are then interpreted using a computational algorithm, carefully tailored to optimize both the resolution and refinement speed for the resulting structures, without requiring user intervention. The RNA secondary structure is first established using SHAPE chemistry. We then use a sequence-directed cleavage agent, which can be placed arbitrarily in many helical motifs, to obtain high quality inter-residue distances. We interpret this in-solution chemical information using a fast, coarse grained, discrete molecular dynamics engine in which each RNA nucleotide is represented by pseudoatoms for the phosphate, ribose, and nucleobase groups. By this approach, we refine base paired positions in yeast tRNA(Asp) to 4 A rmsd without any preexisting information or assumptions about secondary or tertiary structures. This blended experimental and computational approach has the potential to yield native-like models for the diverse universe of functionally important RNAs whose structures cannot be characterized by conventional structural methods.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Definition of a high-affinity Gag recognition structure mediating packaging of a retroviral RNA genome

Cristina Gherghe; Tania Lombo; Christopher W. Leonard; Siddhartha A.K. Datta; Julian W. Bess; Robert J. Gorelick; Alan Rein; Kevin M. Weeks

All retroviral genomic RNAs contain a cis-acting packaging signal by which dimeric genomes are selectively packaged into nascent virions. However, it is not understood how Gag (the viral structural protein) interacts with these signals to package the genome with high selectivity. We probed the structure of murine leukemia virus RNA inside virus particles using SHAPE, a high-throughput RNA structure analysis technology. These experiments showed that NC (the nucleic acid binding domain derived from Gag) binds within the virus to the sequence UCUG-UR-UCUG. Recombinant Gag and NC proteins bound to this same RNA sequence in dimeric RNA in vitro; in all cases, interactions were strongest with the first U and final G in each UCUG element. The RNA structural context is critical: High-affinity binding requires base-paired regions flanking this motif, and two UCUG-UR-UCUG motifs are specifically exposed in the viral RNA dimer. Mutating the guanosine residues in these two motifs—only four nucleotides per genomic RNA—reduced packaging 100-fold, comparable to the level of nonspecific packaging. These results thus explain the selective packaging of dimeric RNA. This paradigm has implications for RNA recognition in general, illustrating how local context and RNA structure can create information-rich recognition signals from simple single-stranded sequence elements in large RNAs.


RNA | 2014

RNA secondary structure modeling at consistent high accuracy using differential SHAPE.

Greggory M. Rice; Christopher W. Leonard; Kevin M. Weeks

RNA secondary structure modeling is a challenging problem, and recent successes have raised the standards for accuracy, consistency, and tractability. Large increases in accuracy have been achieved by including data on reactivity toward chemical probes: Incorporation of 1M7 SHAPE reactivity data into an mfold-class algorithm results in median accuracies for base pair prediction that exceed 90%. However, a few RNA structures are modeled with significantly lower accuracy. Here, we show that incorporating differential reactivities from the NMIA and 1M6 reagents--which detect noncanonical and tertiary interactions--into prediction algorithms results in highly accurate secondary structure models for RNAs that were previously shown to be difficult to model. For these RNAs, 93% of accepted canonical base pairs were recovered in SHAPE-directed models. Discrepancies between accepted and modeled structures were small and appear to reflect genuine structural differences. Three-reagent SHAPE-directed modeling scales concisely to structurally complex RNAs to resolve the in-solution secondary structure analysis problem for many classes of RNA.


Journal of Virology | 2003

An Attenuating Mutation in nsP1 of the Sindbis-Group Virus S.A.AR86 Accelerates Nonstructural Protein Processing and Up-Regulates Viral 26S RNA Synthesis

Mark T. Heise; Laura J. White; Dennis A. Simpson; Christopher W. Leonard; Kristen A. Bernard; Rick B. Meeker; Robert E. Johnston

ABSTRACT The Sindbis-group alphavirus S.A.AR86 encodes a threonine at nonstructural protein 1 (nsP1) 538 that is associated with neurovirulence in adult mice. Mutation of the nsP1 538 Thr to the consensus Ile found in nonneurovirulent Sindbis-group alphaviruses attenuates S.A.AR86 for adult mouse neurovirulence, while introduction of Thr at position 538 in a nonneurovirulent Sindbis virus background confers increased neurovirulence (M. T. Heise et al., J. Virol. 74:4207-4213, 2000). Since changes in the viral nonstructural region are likely to affect viral replication, studies were performed to evaluate the effect of Thr or Ile at nsP1 538 on viral growth, nonstructural protein processing, and RNA synthesis. Multistep growth curves in Neuro2A and BHK-21 cells revealed that the attenuated s51 (nsP1 538 Ile) virus had a slight, but reproducible growth advantage over the wild-type s55 (nsP1 538 Thr) virus. nsP1 538 lies within the cleavage recognition domain between nsP1 and nsP2, and the presence of the attenuating Ile at nsP1 538 accelerated the processing of S.A.AR86 nonstructural proteins both in vitro and in infected cells. Since nonstructural protein processing is known to regulate alphavirus RNA synthesis, experiments were performed to evaluate the effect of Ile or Thr at nsP1 538 on viral RNA synthesis. A combination of S.A.AR86-derived reporter assays and RNase protection assays determined that the presence of Ile at nsP1 538 led to earlier expression from the viral 26S promoter without affecting viral minus- or plus-strand synthesis. These results suggest that slower nonstructural protein processing and delayed 26S RNA synthesis in wild-type S.A.AR86 infections may contribute to the adult mouse neurovirulence phenotype of S.A.AR86.


Journal of Virology | 2010

Secondary Structure of the Mature Ex Virio Moloney Murine Leukemia Virus Genomic RNA Dimerization Domain

Cristina Gherghe; Christopher W. Leonard; Robert J. Gorelick; Kevin M. Weeks

ABSTRACT Retroviral genomes are dimeric, comprised of two sense-strand RNAs linked at their 5′ ends by noncovalent base pairing and tertiary interactions. Viral maturation involves large-scale morphological changes in viral proteins and in genomic RNA dimer structures to yield infectious virions. Structural studies have largely focused on simplified in vitro models of genomic RNA dimers even though the relationship between these models and authentic viral RNA is unknown. We evaluate the secondary structure of the minimal dimerization domain in genomes isolated from Moloney murine leukemia virions using a quantitative and single nucleotide resolution RNA structure analysis technology (selective 2′-hydroxyl acylation analyzed by primer extension, or SHAPE). Results are consistent with an architecture in which the RNA dimer is stabilized by four primary interactions involving two sets of intermolecular base pairs and two loop-loop interactions. The dimerization domain can independently direct its own folding since heating and refolding reproduce the same structure as visualized in genomic RNA isolated from virions. Authentic ex virio RNA has a SHAPE reactivity profile similar to that of a simplified transcript dimer generated in vitro, with the important exception of a region that appears to form a compact stem-loop only in the virion-isolated RNA. Finally, we analyze the conformational changes that accompany folding of monomers into dimers in vitro. These experiments support well-defined structural models for an authentic dimerization domain and also emphasize that many features of mature genomic RNA dimers can be reproduced in vitro using properly designed, simplified RNAs.


Nature Structural & Molecular Biology | 2005

Evolution from DNA to RNA recognition by the bI3 LAGLIDADG maturase

Antonella Longo; Christopher W. Leonard; Gurminder S. Bassi; Daniel F. Berndt; Joseph M. Krahn; Traci M. Tanaka Hall; Kevin M. Weeks

LAGLIDADG endonucleases bind across adjacent major grooves via a saddle-shaped surface and catalyze DNA cleavage. Some LAGLIDADG proteins, called maturases, facilitate splicing by group I introns, raising the issue of how a DNA-binding protein and an RNA have evolved to function together. In this report, crystallographic analysis shows that the global architecture of the bI3 maturase is unchanged from its DNA-binding homologs; in contrast, the endonuclease active site, dispensable for splicing facilitation, is efficiently compromised by a lysine residue replacing essential catalytic groups. Biochemical experiments show that the maturase binds a peripheral RNA domain 50 Å from the splicing active site, exemplifying long-distance structural communication in a ribonucleoprotein complex. The bI3 maturase nucleic acid recognition saddle interacts at the RNA minor groove; thus, evolution from DNA to RNA function has been mediated by a switch from major to minor groove interaction.


Biochemistry | 2013

Principles for Understanding the Accuracy of SHAPE-Directed RNA Structure Modeling

Christopher W. Leonard; Christine E. Hajdin; Fethullah Karabiber; David H. Mathews; Oleg V. Favorov; Nikolay V. Dokholyan; Kevin M. Weeks


Biochemistry | 2006

Compartmentalization Directs Assembly of the Signal Recognition Particle

Tuhin Subhra Maity; Christopher W. Leonard; Marsha A. Rose; Howard M. Fried; Kevin M. Weeks

Collaboration


Dive into the Christopher W. Leonard's collaboration.

Top Co-Authors

Avatar

Kevin M. Weeks

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Alan Rein

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Christine E. Hajdin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Cristina Gherghe

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

David H. Mathews

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Julian W. Bess

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Nikolay V. Dokholyan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonella Longo

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge