Christopher W. Plummer
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher W. Plummer.
Nature Structural & Molecular Biology | 2017
Jun Lu; Noel Byrne; John Wang; Gérard Bricogne; Frank K. Brown; Harry R. Chobanian; Steven L. Colletti; Jerry Di Salvo; Brande Thomas-Fowlkes; Yan Guo; Dawn L. Hall; Jennifer Hadix; Nicholas Hastings; Jeffrey D. Hermes; Thu Ho; Andrew D. Howard; Hubert Josien; Maria Kornienko; Kevin J. Lumb; Michael W. Miller; Sangita B. Patel; Barbara Pio; Christopher W. Plummer; Bradley Sherborne; Payal R. Sheth; Sarah Souza; Srivanya Tummala; Clemens Vonrhein; Maria Webb; Samantha J. Allen
Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-Å crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-Å structure of the hGPR40–MK-8666 binary complex reveals an induced-fit conformational coupling between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.
Journal of Organic Chemistry | 2016
Melodie Christensen; Andrew Nolting; Michael Shevlin; Mark Weisel; Peter E. Maligres; Joshua Lee; Robert K. Orr; Christopher W. Plummer; Matthew T. Tudge; Louis-Charles Campeau; Rebecca T. Ruck
α- and β-substitution of dihydrocinnamates has been shown to increase the biological activity of various drug candidates. Recently, we identified enantio- and diastereopure α-methyl-β-cyclopropyldihydrocinnamates to be important pharmacophores in one of our drug discovery programs and endeavored to devise an asymmetric hydrogenation strategy to improve access to this valuable framework. We used high throughput experimentation to define stereoconvergent Suzuki-Miyaura cross-coupling conditions affording (Z)-α-methyl-β-cyclopropylcinnamates and subsequent ruthenium-catalyzed asymmetric hydrogenation conditions affording the desired products in excellent enantio- and diastereoselectivities. These conditions were executed on multigram to kilogram scale to provide three key enantiopure α-methyl-β-cyclopropyldihydrocinnamates with high selectivity.
American Journal of Physiology-endocrinology and Metabolism | 2017
Judith N. Gorski; Michele Pachanski; Joel Mane; Christopher W. Plummer; Sarah Souza; Brande Thomas-Fowlkes; Aimie M. Ogawa; Adam Weinglass; Jerry Di Salvo; Boonlert Cheewatrakoolpong; Andrew D. Howard; Steven L. Colletti; Maria E. Trujillo
G protein-coupled receptor 40 (GPR40) partial agonists lower glucose through the potentiation of glucose-stimulated insulin secretion, which is believed to provide significant glucose lowering without the weight gain or hypoglycemic risk associated with exogenous insulin or glucose-independent insulin secretagogues. The class of small-molecule GPR40 modulators, known as AgoPAMs (agonist also capable of acting as positive allosteric modulators), differentiate from partial agonists, binding to a distinct site and functioning as full agonists to stimulate the secretion of both insulin and glucagon-like peptide-1 (GLP-1). Here we show that GPR40 AgoPAMs significantly increase active GLP-1 levels and reduce acute and chronic food intake and body weight in diet-induced obese (DIO) mice. These effects of AgoPAM treatment on food intake are novel and required both GPR40 and GLP-1 receptor signaling pathways, as demonstrated in GPR40 and GLP-1 receptor-null mice. Furthermore, weight loss associated with GPR40 AgoPAMs was accompanied by a significant reduction in gastric motility in these DIO mice. Chronic treatment with a GPR40 AgoPAM, in combination with a dipeptidyl peptidase IV inhibitor, synergistically decreased food intake and body weight in the mouse. The effect of GPR40 AgoPAMs on GLP-1 secretion was recapitulated in lean, healthy rhesus macaque demonstrating that the putative mechanism mediating weight loss translates to higher species. Together, our data indicate effects of AgoPAMs that go beyond glucose lowering previously observed with GPR40 partial agonist treatment with additional potential for weight loss.
ACS Medicinal Chemistry Letters | 2017
Christopher W. Plummer; Matthew J. Clements; Helen Chen; Murali Rajagopalan; Hubert Josien; William K. Hagmann; Michael D. Miller; Maria E. Trujillo; Melissa Kirkland; Daniel T. Kosinski; Joel Mane; Michele Pachanski; Boonlert Cheewatrakoolpong; Andrew Nolting; Robert K. Orr; Melodie Christensen; Louis-Charles Campeau; Michael Wright; Randal M. Bugianesi; Sarah Souza; Xiaoping Zhang; Jerry Di Salvo; Adam B. Weinglass; Richard Tschirret-Guth; Ravi P. Nargund; Andrew D. Howard; Steven L. Colletti
GPR40 is a G-protein-coupled receptor expressed primarily in pancreatic islets and intestinal L-cells that has been a target of significant recent therapeutic interest for type II diabetes. Activation of GPR40 by partial agonists elicits insulin secretion only in the presence of elevated blood glucose levels, minimizing the risk of hypoglycemia. GPR40 agoPAMs have shown superior efficacy to partial agonists as assessed in a glucose tolerability test (GTT). Herein, we report the discovery and optimization of a series of potent, selective GPR40 agoPAMs. Compound 24 demonstrated sustained glucose lowering in a chronic study of Goto Kakizaki rats, showing no signs of tachyphylaxis for this mechanism.
ACS Medicinal Chemistry Letters | 2018
Helen Chen; Christopher W. Plummer; Dong Xiao; Harry R. Chobanian; Duane E. Demong; Michael D. Miller; Maria E. Trujillo; Melissa Kirkland; Daniel T. Kosinski; Joel Mane; Michele Pachanski; Boonlert Cheewatrakoolpong; Jerry Di Salvo; Brande Thomas-Fowlkes; Sarah Souza; Daniel Tatosian; Qing Chen; Michael J. Hafey; Robert Houle; Andrew Nolting; Robert K. Orr; Juliann Ehrhart; Adam B. Weinglass; Richard Tschirret-Guth; Andrew D. Howard; Steven L. Colletti
A series of biaryl chromans exhibiting potent and selective agonism for the GPR40 receptor with positive allosteric modulation of endogenous ligands (AgoPAM) were discovered as potential therapeutics for the treatment of type II diabetes. Optimization of physicochemical properties through modification of the pendant aryl rings resulted in the identification of compound AP5, which possesses an improved metabolic profile while demonstrating sustained glucose lowering.
PLOS ONE | 2017
Michele Pachanski; Melissa Kirkland; Daniel T. Kosinski; Joel Mane; Boonlert Cheewatrakoolpong; Jiyan Xue; Daphne Szeto; Gail Forrest; Corin Miller; Michelle Bunzel; Christopher W. Plummer; Harry R. Chobanian; Michael W. Miller; Sarah Souza; Brande Thomas-Fowlkes; Aimie M. Ogawa; Adam B. Weinglass; Jerry Di Salvo; Xiaoyan Li; Yue Feng; Daniel Tatosian; Andrew D. Howard; Steven L. Colletti; Maria E. Trujillo
GPR40 agonists are effective antidiabetic agents believed to lower glucose through direct effects on the beta cell to increase glucose stimulated insulin secretion. However, not all GPR40 agonists are the same. Partial agonists lower glucose through direct effects on the pancreas, whereas GPR40 AgoPAMs may incorporate additional therapeutic effects through increases in insulinotrophic incretins secreted by the gut. Here we describe how GPR40 AgoPAMs stimulate both insulin and incretin secretion in vivo over time in diabetic GK rats. We also describe effects of AgoPAMs in vivo to lower glucose and body weight beyond what is seen with partial GPR40 agonists in both the acute and chronic setting. Further comparisons of the glucose lowering profile of AgoPAMs suggest these compounds may possess greater glucose control even in the presence of elevated glucagon secretion, an unexpected feature observed with both acute and chronic treatment with AgoPAMs. Together these studies highlight the complexity of GPR40 pharmacology and the potential additional benefits AgoPAMs may possess above partial agonists for the diabetic patient.
Archive | 2002
Paul E. Finke; Sander G. Mills; Christopher W. Plummer; Shrenik K. Shah; Quang T. Truong
Bioorganic & Medicinal Chemistry Letters | 2005
Christopher W. Plummer; Paul E. Finke; Sander G. Mills; Junying Wang; Xinchun Tong; George A. Doss; Tung M. Fong; Julie Z. Lao; Marie-Therese Schaeffer; Jing Chen; Chun-Pyn Shen; D. Sloan Stribling; Lauren P. Shearman; Alison M. Strack; Lex H.T. Van der Ploeg
Archive | 2015
William K. Hagmann; Ravi P. Nargund; Timothy A. Blizzard; Hubert Josien; Purakkattle Biju; Christopher W. Plummer; Qun Dang; Bing Li; Linus S. Lin; Mingxiang Cui; Bin Hu; Jinglai Hao; Zhengxia Chen
European Journal of Pharmacology | 2008
Lauren P. Shearman; D. Sloan Stribling; Ramon Camacho; Kimberly Rosko; Junying Wang; Sharon Tong; Yue Feng; Donald J. Marsh; Hong Yu; Xiao-Ming Guan; Stephanie K. Spann; Douglas J. MacNeil; Tung M. Fong; Joseph M. Metzger; Mark T. Goulet; William K. Hagmann; Christopher W. Plummer; Paul E. Finke; Sander G. Mills; Shrenik K. Shah; Quang Truong; L.H.T Van der Ploeg; D. Euan MacIntyre; Alison M. Strack