Christopher W. Swarth
University of California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher W. Swarth.
Estuaries and Coasts | 2013
Aat Barendregt; Christopher W. Swarth
Tidal freshwater wetlands (TFW) are situated in the upper estuary in a zone bordered upstream by the nontidal river and downstream by the oligohaline region. Here, discharge of freshwater from the river and the daily tidal pulse from the sea combine to create conditions where TFW develop. TFW are often located where human population density is high, which has led to wetland degradation or destruction. Globally, TFW are largely restricted to the temperate zone where the magnitude of annual river discharge prevents saline waters from penetrating too far inland. The constant input of river water delivers high loads of sediments, dissolved nutrients, and other suspended matter leading to high sedimentation rates and high nutrient levels. Prominent biogeochemical processes include the transformation of nitrogen by bacteria and immobilization of phosphate. A diverse, characteristic vegetation community develops which supports a rich fauna. Biotic diversity is highest in the high marsh areas and decreases in the lower levels where tidal inundation is greatest. Benthic fauna is rather poor in diversity but high in biomass compared to other regions of the estuary. Global climate change is a threat for this system directly by sea level rise, which will cause brackish water to intrude into the fresh system, and indirectly during droughts, which reduce river discharge. Salinity will affect the presence of flora and fauna and facilitates sulfate reduction of organic matter in the soil. Increased decomposition of organic matter following saltwater intrusion can result in a lowering of wetland surface elevation. The papers assembled in this issue focus on how these tidal freshwater wetlands have changed over recent time and how they may respond to new impacts in the future.
Estuaries and Coasts | 2013
Christopher W. Swarth; Patricia Delgado; Dennis F. Whigham
Tidal freshwater wetlands are complex, species-rich ecosystems located at the interface between tidal estuaries and nontidal rivers. This study conducted on the Patuxent River estuary in Maryland was designed to assess vegetation dynamics over several decades to determine if there were directional changes in the dominant communities. Aerial photographs (1970, 1989, and 2007) documented broad-scale spatial changes in major plant communities. The coverage of areas dominated by Nuphar lutea and Phragmites australis expanded; mixed vegetation and scrub–shrub habitats were essentially unchanged; and Typha and Zizania aquatica communities fluctuated in coverage. Data collected between 1988 and 2010 from permanent plots and transects were used to examine fine-scale changes. Shifts in the importance of some species through time were observed, but there were no directional changes in community species composition. The lack of directional change as measured at a fine scale is characteristic of tidal freshwater wetlands in which variations in the abundance of individual species, especially annuals, are responsible for most short-term change in species composition. Changes in the composition of plant communities are interpreted as responses to variations in vertical accretion, stability of habitat types, invasive plant species, and herbivores. In the future, vegetation changes are likely to occur as a result of the intrusion of brackish water and increased flooding associated with global climate change and sea level rise. This long-term study establishes a baseline from which potential future changes to tidal freshwater wetlands can be better understood.
Chelonian Conservation and Biology | 2012
Gerardo A. Cordero; Rebecca Reeves; Christopher W. Swarth
Abstract The aquatic movement patterns and home-range size of the Eastern Mud Turtle, Kinosternon subrubrum, have received little attention. We radio-tracked 5 adult females and 5 adult males during 2 yrs in the Mid-Atlantic region of the United States. Our mean estimates of home-range size (18.6 ± 23 ha in 2008 and 16.3 ± 16.3 ha in 2009) and maximum aquatic distance traveled (815 ± 455 m in 2008 and 774 ± 331 m in 2009) suggest that K. subrubrum is highly adept at movement in aquatic environments.
International Journal of Zoology | 2012
Heather R. Cunningham; Charles A. Davis; Christopher W. Swarth; Glenn D. Therres
Declines of amphibian and reptile populations are well documented. Yet a lack of understanding of their distribution may hinder conservation planning for these species. The Maryland Amphibian and Reptile Atlas project (MARA) was launched in 2010. This five-year, citizen science project will document the distribution of the 93 amphibian and reptile species in Maryland. During the 2010 and 2011 field seasons, 488 registered MARA volunteers collected 13,919 occurrence records that document 85 of Marylands amphibian and reptile species, including 19 frog, 20 salamander, five lizard, 25 snake, and 16 turtle species. Thirteen of these species are of conservation concern in Maryland. The MARA will establish a baseline by which future changes in the distribution of populations of native herpetofauna can be assessed as well as provide information for immediate management actions for rare and threatened species. As a citizen science project it has the added benefit of educating citizens about native amphibian and reptile diversity and its ecological benefits—an important step in creating an informed society that actively participates in the long-term conservation of Marylands nature heritage.
Estuaries and Coasts | 2013
P. Delgado; P. Hensel; Christopher W. Swarth; M. Ceroni; R. Boumans
Archive | 2009
Dennis F. Whigham; Andrew H. Baldwin; Christopher W. Swarth
Archive | 2007
Katalin Szlavecz; Andreas Terzis; R. Musaloiu; C. H. Liang; John G Cogan; John Klofas; Lijun Xia; Christopher W. Swarth; Shawn A. Matthews
Acta Zoológica Mexicana (nueva serie) | 2010
Gerardo A. Cordero; Christopher W. Swarth
Archive | 2002
Roelof Boumans; Marta Ceroni; David Burdick; Donald R. Cahoon; Christopher W. Swarth
ACTA ZOOLÓGICA MEXICANA (N.S.) | 2010
Gerardo A. Cordero; Christopher W. Swarth