Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christy Lambright is active.

Publication


Featured researches published by Christy Lambright.


Biology of Reproduction | 2005

Late Gestational Exposure to the Fungicide Prochloraz Delays the Onset of Parturition and Causes Reproductive Malformations in Male but Not Female Rat Offspring

Nigel C. Noriega; Joseph Ostby; Christy Lambright; Vickie S. Wilson; L. Earl Gray

Abstract Prochloraz (PZ) is an imidazole fungicide that displays multiple endocrine activities. It inhibits steroid synthesis via P450 modulation and acts as an androgen receptor (AR) antagonist, but its effects on male sexual differentiation have not been described. The purpose of the current study was to expand in vitro observations and to determine whether PZ affected sexual differentiation. PZ effects on AR-mediated gene expression were tested using a cell line (MDA-kb2) containing endogenous AR and stably transfected with an MMTV-luc reporter. PZ concentrations greater than 1 μM caused a dose-dependent inhibition of dihydrotestosterone-induced gene expression. PZ also inhibited R1881 binding to the rat AR (IC50 ∼60 μM). In vivo, pregnant rats received PZ by gavage from Gestational Day 14 to 18 at doses of 31.25, 62.5, 125, and 250 mg/kg of body weight per day. PZ delayed delivery in a dose-dependent manner and resulted in pup mortalities at the two highest doses. In male offspring, anogenital distance and body weight were slightly reduced at 3 days of age. Additionally, female-like areolas were observed at 13 days of age at frequencies of 31%, 43%, 41%, and 71% in the lowest-dose to highest-dose groups, respectively. Weights of androgen-dependent tissues showed dose-dependent reductions. Hypospadias and vaginal pouches were noted in all males treated with 250 mg/kg, whereas those defects were observed in 12.5% and 6.25%, respectively, of males treated with 125 mg/kg. Treatment did not affect age of preputial separation in animals without penile malformations. Despite severe malformations in males, no malformations were noted in females. Together, these results indicate that PZ alters sexual differentiation in an antiandrogenic manner.


Toxicology and Industrial Health | 1999

Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p′-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat:

Cynthia J. Wolf; Christy Lambright; Peter Mann; Matthew Price; Ralph L. Cooper; Joseph Ostby; L. Earl Gray

Antiandrogenic chemicals alter sexual differentiation by a variety of mechanisms, and as a consequence, they induce different profiles of effects. For example, in utero treatment with the androgen receptor (AR) antagonist, flutamide, produces ventral prostate agenesis and testicular nondescent, while in contrast, finasteride, an inhibitor of 5α-dihydrotestosterone (DHT) synthesis, rarely, if ever, induces such malformations. In this regard, it was recently proposed that dibutyl phthalate (DBP) alters reproductive development by a different mechanism of action than flutamide or vinclozolin (V), which are AR antagonists, because the male offsprings display an unusually high incidence of testicular and epididymal alterations—effects rarely seen after in utero flutamide or V treatment. In this study, we present original data describing the reproductive effects of 10 known or suspected anti-androgens, including a Leydig cell toxicant ethane dimethane sulphonate (EDS, 50 mg kg−1 day−1), linuron (L, 100 mg kg−1 day−1), p,p′-DDE (100 mg kg−1 day−1), ketoconazole (12-50 mg kg−1 day−1), procymidone (P, 100 mg kg−1 day−1), chlozolinate (100 mg kg−1 day−1), iprodione (100 mg kg−1 day−1), DBP (500 mg kg−1 day−1), diethylhexyl phthalate (DEHP, 750 mg kg−1 day−1), and polychlorinated biphenyl (PCB) congener no. 169 (single dose of 1.8 mg kg−1). Our analysis indicates that the chemicals discussed here can be clustered into three or four separate groups, based on the resulting profiles of reproductive effects. Vinclozolin, P, and DDE, known AR ligands, produce similar profiles of toxicity. However, p,p′-DDE is less potent in this regard. DBP and DEHP produce a profile distinct from the above AR ligands. Male offsprings display a higher incidence of epididymal and testicular lesions than generally seen with flutamide, P, or V even at high dosage levels. Linuron treatment induced a level of external effects consistent with its low affinity for AR [reduced anogenital distance (AGD), retained nipples, and a low incidence of hypospadias]. However, L treatment also induced an unanticipated degree of malformed epididymides and testis atrophy. In fact, the profile of effects induced by L was similar to that seen with DBP. These results suggest that L may display several mechanisms of endocrine toxicity, one of which involves AR binding. Chlozolinate and iprodione did not produce any signs of maternal or fetal endocrine toxicity at 100 mg kg−1 day−1. EDS produced severe maternal toxicity and a 45% reduction in size at birth, which resulted in the death of all neonates by 5 days of age. However, EDS only reduced AGD in male pups by 15%. Ketoconazole did not demasculinize or feminize males but rather displayed anti-hormonal activities, apparently by inhibiting ovarian hormone synthesis, which resulted in delayed delivery and whole litter loss. In summary, the above in vivo data suggest that the chemicals we studied alter male sexual differentiation via different mechanisms. The anti-androgens V, P, and p,p′-DDE produce flutamide-like profiles that are distinct from those seen with DBP, DEHP, and L. The effects of PCB 169 bear little resemblance to those of any known anti-androgen. Only in depth in vitro studies will reveal the degree to which one can rely upon in vivo studies, like those presented here, to predict the cellular and molecular mechanisms of developmental toxicity.


Toxicology and Industrial Health | 1999

The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro

Joseph Ostby; William R. Kelce; Christy Lambright; Cynthia J. Wolf; Mann P; Leon Earl Gray

Procymidone is a dicarboximide fungicide structurally related to the well-characterized fungicide vinclozolin. Vinclozolin metabolites bind to mammalian androgen receptors (AR) and act as AR antagonists, inhibiting androgen-dependent gene expression in vivo and in vitro by inhibiting AR-binding to DNA. The current study was designed to determine if procymidone acted as an AR antagonist in vitro and to describe the dosage levels of procymidone that alter sexual differentiation in vivo. In vitro, procymidone inhibited androgen from binding the human AR (hAR) in COS (monkey kidney) cells transfected with hAR at 3.16 μM. In vitro, procymidone acted as an androgen antagonist, inhibiting dihydrotestosterone (DHT)-induced transcriptional activation at 0.2 μM in CV-1 cells (cotransfected with the hAR and a MMTV-luciferase reporter gene). In vivo, maternal procymidone exposure at 0, 25, 50, 100, or 200 mg kg−1 day−1 during gestation and early lactation (gestational day 14 to postnatal day 3) altered reproductive development of male offspring at all dosage levels tested. Male offspring exhibited shortened anogenital distance (at 25 mg kg−1 day−1 and above), permanent nipples, reduced weight of several androgen-dependent tissues (levator ani and bulbocavernosus muscles, prostate, seminal vesicles, Cowpers gland and glans penis), and malformations (hypospadias, cleft phallus, exposed os penis, vaginal pouch, hydronephrosis, occasional hydroureter, epididymal granulomas, and ectopic, undescended testes). In addition, perinatal procymidone treatment had a marked effect on the histology of the lateral and ventral prostatic and seminal vesicular tissues of the offspring (at 50 mg kg−1 day−1 and above). These effects consisted of fibrosis, cellular infiltration, and epithelial hyperplasia. This constellation of effects is similar to that produced by perinatal exposure to vinclozolin. However, procymidone appears to be slightly less potent in inducing malformations than vinclozolin by a factor of about two. In summary, the antiandrogenic activity of procymidone was demonstrated in vivo and in vitro in cell lines transfected with hAR. Since the role of androgens in mammalian sexual differentiation is highly conserved, it is likely that humans would be adversely affected by procymidone in a predictable manner if the human fetus was exposed to sufficient levels during critical stages of intrauterine and neonatal life.


Toxicology and Industrial Health | 1999

Peripubertal exposure to the antiandrogenic fungicide, vinclozolin, delays puberty, inhibits the development of androgen-dependent tissues, and alters androgen receptor function in the male rat

Emily Monosson; William R. Kelce; Christy Lambright; Joseph Ostby; Leon Earl Gray

Vinclozolin is a well-characterized antiandrogenic fungicide. It produces adverse effects when administered during sexual differentiation, and it alters reproductive function in adult male rats by acting as an androgen-antagonist. Two active metabolites of vinclozolin, M1 and M2, compete with natural androgens for the rat and human androgen receptors (ARs), an effect that blocks androgen-induced gene expression in vivo and in vitro. In addition to their effects during perinatal life, androgens play a key role in pubertal maturation in young males. In this regard, the present study was designed to examine the effects of peripubertal oral administration of vinclozolin (0, 10, 30, or 100 mg kg−1 day−1) on morphological landmarks of puberty, hormone levels, and sex accessory gland development in male rats. In addition, as binding of the M1 and M2 to AR alter the subcellular distribution of AR by inhibiting AR-DNA binding, we examined the effects of vinclozolin on AR distribution in the target cells after in vivo treatment. We also examined serum levels of vinclozolin, M1, and M2 in the treated males so that these could be related to the effects on the reproductive tract and AR distribution. Vinclozolin treatment delayed pubertal maturation (at 30 and 100 mg kg−1 day−1) and retarded sex accessory gland and epididymal growth. Serum luteinizing hormone (LH; significant at all dosage levels) and testosterone and 5α-androstane,3α,17β-diol (at 100 mg kg−1 day−1) levels were increased. Testis size and sperm production, however, were unaffected. It was apparent that these effects were concurrent with subtle alterations in the subcellular distribution of AR. In control animals, most AR were in the high salt cell fraction, apparently bound to the natural ligand and DNA. Vinclozolin treatment reduced the amount of AR in the high salt (bound to DNA) fraction and it increased AR levels in the low salt (inactive, not bound to DNA) fraction. M1 and M2 were found in the serum of animals from the two highest dosage groups, but they were present at levels well below their K i values. In summary, these results suggest that when the vinclozolin metabolites occupy a small percentage of AR in the cell, this prevents maximal AR-DNA binding and alters in vivo androgen-dependent gene expression and protein synthesis, which in turn results in obvious alterations of morphological development and serum hormone levels. It is noteworthy that similar exposures during prenatal life result in a high incidence of malformations in male rats.


Environmental Health Perspectives | 2005

Identification of metabolites of trenbolone acetate in androgenic runoff from a beef feedlot.

Elizabeth J. Durhan; Christy Lambright; Elizabeth A. Makynen; James M. Lazorchak; Phillip C. Hartig; Vickie S. Wilson; L. Earl Gray; Gerald T. Ankley

Little is known concerning the potential ecological effects of hormonally active substances associated with discharges from animal feeding operations. Trenbolone acetate is a synthetic anabolic steroid that is widely used in the United States to promote growth of beef cattle. Metabolites of trenbolone acetate include the stereoisomers 17α- and 17β-trenbolone, both of which are stable in animal wastes and are relatively potent androgens in fish and mammals. Our purpose in this study was to evaluate the occurrence of 17α- and 17β-trenbolone in a beef cattle feedlot discharge and in river water upstream and downstream from the discharge. In conjunction with that effort, we measured in vitro androgenic activity of the discharge using CV-1 cells that had been transiently cotransfected with human androgen receptor and reporter gene constructs. Samples were collected on nine different occasions during 2002 and 2003. Whole-water samples from the discharge caused a significant androgenic response in the CV-1 cells and contained detectable concentrations of 17α- and 17β-trenbolone. Further work is needed to ascertain the degree to which synthetic androgens such as trenbolone contribute to androgenic activity of feedlot discharges.


Toxicological Sciences | 2009

Cumulative and Antagonistic Effects of a Mixture of the Antiandrogens Vinclozolin and Iprodione in the Pubertal Male Rat

Chad R. Blystone; Christy Lambright; Mary C. Cardon; Johnathan Furr; Cynthia V. Rider; Phillip C. Hartig; Vickie S. Wilson; L.E. Gray

Vinclozolin and iprodione are dicarboximide fungicides that display antiandrogenic effects in the male rat, which suggests that a mixture would lead to cumulative effects on androgen-sensitive end points. Iprodione is a steroid synthesis inhibitor, but androgen receptor antagonist activity, which is displayed by vinclozolin, has not been fully evaluated. Here, we demonstrate that iprodione binds to the human androgen receptor (IC(50) = 86.0 microM), reduces androgen-dependent gene expression, and reduces androgen-sensitive tissue weights in castrated male rats (Hershberger assay). Since vinclozolin and iprodione affect common targets in the pubertal male rat, we tested the hypothesis that a mixture would have cumulative antiandrogenic effects. An iprodione dose, that does not significantly affect androgen-dependent morphological end points, was combined with vinclozolin doses (2 x 5 factorial design). Sprague-Dawley rats were dosed by gavage with vinclozolin at 0, 10, 30, 60, and 100 mg/kg/day with and without 50 mg iprodione/kg/day from postnatal day (PND) 23 to 55-57 (n = 8 per group). The age at puberty (preputial separation [PPS]), organ weights, serum hormones, and ex vivo testis steroid hormone production were measured. Vinclozolin delayed PPS, reduced androgen-sensitive organ weights, and increased serum testosterone. The addition of iprodione enhanced the vinclozolin inhibition of PPS (PND 47.5 vs.49.1; two-way ANOVA: iprodione main effect p = 0.0002). The dose response for several reproductive and nonreproductive organ weights was affected in a cumulative manner. In contrast, iprodione antagonized the vinclozolin-induced increase in serum testosterone. These results demonstrate that these fungicides interact on common targets in a tissue-specific manner when coadministered to the pubertal male rat.


Advances in Experimental Medicine and Biology | 2004

TOXICANT-INDUCED HYPOSPADIAS IN THE MALE RAT

L. Earl Gray; Joseph Ostby; Johnathan Furr; Carmen Wolf; Christy Lambright; Vickie S. Wilson; Nigel C. Noriega

Prenatal exposure to endocrine disrupting chemicals that interfere with the androgen or insulin like factor 3 signaling pathways during sexual differentiation can induce malformations of the reproductive tract of the male rodent offspring. The pattern of malformations in the male depends upon the specific mechanism of action of the toxicant, the dosage level administered and the timing of administration during pregnancy. Hypospadias occurs in male rats or mice after maternal treatment with 1). potent estrogens or estrogenic drugs, 2). drugs that inhibit 5 alpha reductase, 3). drugs, herbicides and dicarboximide and conazole fungicides that act as androgen receptor (AR) antagonists, and 4). drugs, herbicides and conazole fungicides that inhibit cytochrome P450 enzymes involved in steroid hormone synthesis. In addition, 5). several phthalate diesters including di-n-butyl phthalate (DBP), di-n-ethylhexyl phthalate (DEHP), and benzylbutyl phthalate(BBP) also induce hypospadias and by altering fetal testis Leydig cell differentiation, resulting in reduced steroid and peptide hormone production.


Human Reproduction Update | 2001

Effects of environmental antiandrogens on reproductive development in experimental animals

L. E. Gray; Joseph Ostby; Johnathan Furr; Cynthia J. Wolf; Christy Lambright; Louise Parks; D.N.R. Veeramachaneni; Vickie S. Wilson; M. Price; Andrew K. Hotchkiss; Edward F. Orlando; Louis J. Guillette


Environmental Health Perspectives | 2003

Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow.

Edward F. Orlando; Alan S. Kolok; Gerry A Binzcik; Jennifer L Gates; Megan K. Horton; Christy Lambright; L. Earl Gray; Ana M. Soto; Louis J. Guillette


Toxicology Letters | 2004

Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis

Vickie S. Wilson; Christy Lambright; Johnathan Furr; Joseph Ostby; Carmen R. Wood; Gary A. Held; L. Earl Gray

Collaboration


Dive into the Christy Lambright's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Ostby

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kembra L. Howdeshell

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Louis J. Guillette

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Gerald T. Ankley

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Chad R. Blystone

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.E. Gray

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge