Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Earl Gray is active.

Publication


Featured researches published by L. Earl Gray.


Toxicological Sciences | 1989

A Dose-Response Analysis of Methoxychlor-Induced Alterations of Reproductive Development and Function in the Rat

L. Earl Gray; Joseph S. Ostby; Janet M. Ferrell; Georgia Rehnberg; Ralph E. Linder; Ralph L. Cooper; Jerome M. Goldman; Valerie L. Slott; John W. Laskey

In the present study rats were dosed from weaning, through puberty and gestation, to Day 15 of lactation with methoxychlor at 25, 50, 100, or 200 mg/kg/day. Morphological landmarks of puberty were measured, including the ages at vaginal opening, first estrus, and first estrous cycle in females and at preputial separation in males. In the female, estrous cyclicity, fertility, litter size, number of implantation sites, organ weights, and ovarian and uterine histology were also measured. The viability of the offspring (F1) and their fertility were evaluated using a continuous breeding protocol. Males were necropsied after breeding, the reproductive organs were weighed, and the cauda epididymal sperm counts were determined. One testis was used for histopathology, while the other was used to quantify interstitial fluid (IF) content, IF testosterone concentration, and testicular sperm production. Testosterone and androgen-binding protein were measured in the caput epididymis, and sperm motility and morphology were evaluated from a caudal sample. The serum and pituitary were saved for hormonal determinations. Methoxychlor accelerated the age at vaginal opening and first estrus, and the vaginal smears were cornified. Growth was retarded at 100 and 200 mg/kg/day and fertility was reduced when the females were bred with untreated or similarly treated males. In the highest-dose group, the mated females went from constant estrus into pseudopregnancy following mating, but they had no implants. In males, methoxychlor treatment markedly reduced growth, seminal vesicle weight, cauda epididymal weight, caudal sperm content, and pituitary weight. Puberty was delayed in the two highest-dosage groups. Testicular sperm measures were much less affected than caudal measures. Testis weight and histology were slightly affected, and testicular sperm production, sperm morphology, and motility were unaffected. Endocrine function of the testes and pituitary was altered by methoxychlor administration. Leydig cell testosterone production, in response to human chorionic gonadotropin challenge, was reduced and pituitary levels of prolactin, thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH) were altered. In contrast, serum levels of prolactin, FSH, and luteinizing hormone were unaffected. Serum TSH was reduced by 50% of control at 100 and 200 mg/kg/day, while pituitary levels were increased. Gonadotropin-releasing hormone concentration in the mediobasal hypothalamus was also elevated. In spite of the many reproductive alterations, the fertility of treated males was not reduced when they were mated with untreated females.(ABSTRACT TRUNCATED AT 400 WORDS)


Biology of Reproduction | 2005

Late Gestational Exposure to the Fungicide Prochloraz Delays the Onset of Parturition and Causes Reproductive Malformations in Male but Not Female Rat Offspring

Nigel C. Noriega; Joseph Ostby; Christy Lambright; Vickie S. Wilson; L. Earl Gray

Abstract Prochloraz (PZ) is an imidazole fungicide that displays multiple endocrine activities. It inhibits steroid synthesis via P450 modulation and acts as an androgen receptor (AR) antagonist, but its effects on male sexual differentiation have not been described. The purpose of the current study was to expand in vitro observations and to determine whether PZ affected sexual differentiation. PZ effects on AR-mediated gene expression were tested using a cell line (MDA-kb2) containing endogenous AR and stably transfected with an MMTV-luc reporter. PZ concentrations greater than 1 μM caused a dose-dependent inhibition of dihydrotestosterone-induced gene expression. PZ also inhibited R1881 binding to the rat AR (IC50 ∼60 μM). In vivo, pregnant rats received PZ by gavage from Gestational Day 14 to 18 at doses of 31.25, 62.5, 125, and 250 mg/kg of body weight per day. PZ delayed delivery in a dose-dependent manner and resulted in pup mortalities at the two highest doses. In male offspring, anogenital distance and body weight were slightly reduced at 3 days of age. Additionally, female-like areolas were observed at 13 days of age at frequencies of 31%, 43%, 41%, and 71% in the lowest-dose to highest-dose groups, respectively. Weights of androgen-dependent tissues showed dose-dependent reductions. Hypospadias and vaginal pouches were noted in all males treated with 250 mg/kg, whereas those defects were observed in 12.5% and 6.25%, respectively, of males treated with 125 mg/kg. Treatment did not affect age of preputial separation in animals without penile malformations. Despite severe malformations in males, no malformations were noted in females. Together, these results indicate that PZ alters sexual differentiation in an antiandrogenic manner.


Toxicology and Industrial Health | 1999

Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p′-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat:

Cynthia J. Wolf; Christy Lambright; Peter Mann; Matthew Price; Ralph L. Cooper; Joseph Ostby; L. Earl Gray

Antiandrogenic chemicals alter sexual differentiation by a variety of mechanisms, and as a consequence, they induce different profiles of effects. For example, in utero treatment with the androgen receptor (AR) antagonist, flutamide, produces ventral prostate agenesis and testicular nondescent, while in contrast, finasteride, an inhibitor of 5α-dihydrotestosterone (DHT) synthesis, rarely, if ever, induces such malformations. In this regard, it was recently proposed that dibutyl phthalate (DBP) alters reproductive development by a different mechanism of action than flutamide or vinclozolin (V), which are AR antagonists, because the male offsprings display an unusually high incidence of testicular and epididymal alterations—effects rarely seen after in utero flutamide or V treatment. In this study, we present original data describing the reproductive effects of 10 known or suspected anti-androgens, including a Leydig cell toxicant ethane dimethane sulphonate (EDS, 50 mg kg−1 day−1), linuron (L, 100 mg kg−1 day−1), p,p′-DDE (100 mg kg−1 day−1), ketoconazole (12-50 mg kg−1 day−1), procymidone (P, 100 mg kg−1 day−1), chlozolinate (100 mg kg−1 day−1), iprodione (100 mg kg−1 day−1), DBP (500 mg kg−1 day−1), diethylhexyl phthalate (DEHP, 750 mg kg−1 day−1), and polychlorinated biphenyl (PCB) congener no. 169 (single dose of 1.8 mg kg−1). Our analysis indicates that the chemicals discussed here can be clustered into three or four separate groups, based on the resulting profiles of reproductive effects. Vinclozolin, P, and DDE, known AR ligands, produce similar profiles of toxicity. However, p,p′-DDE is less potent in this regard. DBP and DEHP produce a profile distinct from the above AR ligands. Male offsprings display a higher incidence of epididymal and testicular lesions than generally seen with flutamide, P, or V even at high dosage levels. Linuron treatment induced a level of external effects consistent with its low affinity for AR [reduced anogenital distance (AGD), retained nipples, and a low incidence of hypospadias]. However, L treatment also induced an unanticipated degree of malformed epididymides and testis atrophy. In fact, the profile of effects induced by L was similar to that seen with DBP. These results suggest that L may display several mechanisms of endocrine toxicity, one of which involves AR binding. Chlozolinate and iprodione did not produce any signs of maternal or fetal endocrine toxicity at 100 mg kg−1 day−1. EDS produced severe maternal toxicity and a 45% reduction in size at birth, which resulted in the death of all neonates by 5 days of age. However, EDS only reduced AGD in male pups by 15%. Ketoconazole did not demasculinize or feminize males but rather displayed anti-hormonal activities, apparently by inhibiting ovarian hormone synthesis, which resulted in delayed delivery and whole litter loss. In summary, the above in vivo data suggest that the chemicals we studied alter male sexual differentiation via different mechanisms. The anti-androgens V, P, and p,p′-DDE produce flutamide-like profiles that are distinct from those seen with DBP, DEHP, and L. The effects of PCB 169 bear little resemblance to those of any known anti-androgen. Only in depth in vitro studies will reveal the degree to which one can rely upon in vivo studies, like those presented here, to predict the cellular and molecular mechanisms of developmental toxicity.


Birth Defects Research Part B-developmental and Reproductive Toxicology | 2008

NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A.

Robert E. Chapin; Jane Adams; Kim Boekelheide; L. Earl Gray; Simon W. Hayward; Peter S.J. Lees; Barry S. McIntyre; Kenneth Portier; Teresa M. Schnorr; Sherry G. Selevan; John G. Vandenbergh; Susan R. Woskie

Robert E. Chapin, Jane Adams, Kim Boekelheide, L. Earl Gray Jr, Simon W. Hayward, Peter S.J. Lees, Barry S. McIntyre, Kenneth M. Portier, Teresa M. Schnorr, Sherry G. Selevan, John G. Vandenbergh, and Susan R. Woskie Pfizer, Inc., Groton, CT University of Massachusetts, Boston, MA Brown University, Providence, RI U.S. Environmental Protection Agency, Research Triangle Park, NC Vanderbilt University Medical Center, Nashville, TN Johns Hopkins University, Baltimore, MD Schering Plough Research Institute, Summit, NJ American Cancer Society, Atlanta, GA National Institute for Occupational Safety and Health, Cincinnati, OH U.S. Public Health Service (Ret), Silver Spring, MD North Carolina State University, Raleigh, NC University of Massachusetts, Lowell, MA


Toxicology and Industrial Health | 1999

Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat:

Joseph Ostby; Emily Monosson; William R. Kelce; L. Earl Gray

In humans and rodents, exposure to antiandrogenic chemicals during sexual differentiation can produce malformations of the reproductive tract. Perinatal administration of 100 or 200 mg vinclozolin (V) kg−1 day−1 during sexual differentiation in rats induces female-like anogenital distance (AGD), retained nipples, cleft phallus with hypospadias, suprainguinal ectopic scrota/testes, a vaginal pouch, epididymal granulomas, and small to absent sex accessory glands in male offspring. Vinclozolin is metabolized to at least two active forms, M1 and M2, that display antiandrogenic activity by binding the androgen receptor (AR). Here, we present information on the reproductive effects of oral treatment with low dosage levels of V during sexual differentiation of the male rat. Vinclozolin was administered to the dam at 0, 3.125, 6.25, 12.5, 25, 50, or 100 mg kg−1 day−1 from gestational day 14 to postnatal day 3 (the period of fetal/neonatal testicular testosterone synthesis and sexual differentiation). At doses of 3.125 mg V kg−1 and above, AGD was significantly reduced in newborn male offspring and the incidence of areolas was increased. These effects were associated with permanent alterations in other androgen-dependent tissues. Ventral prostate weight in one year old male offspring was reduced in all treatment groups (significant at 6.25, 25, 50, and 100 mg kg−1 day−1), and permanent nipples were detected in males at 3.125 (1.4%), 6.25 (3.6%), 12.5 (3.9%), 25 (8.5%), 50 (91%), and 100 (100%) mg V kg−1 day−1. To date, permanent nipples have not been observed in a control male from any study in our laboratory. Vinclozolin treatment at 50 and 100 mg kg−1 day−1 induced reproductive tract malformations and reduced ejaculated sperm numbers and fertility. Even though all of the effects of V likely result from the same initial event (AR binding), the different endpoints displayed a wide variety of dose-response curves and ED50s. The dose-response data for several of the functional endpoints failed to display an obvious threshold. These data demonstrate that V produces subtle alterations in sexual differentiation of the external genitalia, ventral prostate, and nipple tissue in male rat offspring at dosage levels below the previously described no-observed-effect-level (NOEL). These effects occur at a dosage level an order of magnitude below that required to induce malformations and reduce fertility. Hence, multigenerational reproduction studies of antiandrogenic chemicals that were not conducted under the Environmental Protection Agencys new Harmonized Multigenerational Test Guidelines, which include endpoints sensitive to antiandrogens at low dosage levels, could yield a NOEL that is at least an order of magnitude too high.


European Journal of Pharmacology: Environmental Toxicology and Pharmacology | 1995

Functional aspects of developmental toxicity of polyhalogenated aromatic hydrocarbons in experimental animals and human infants

A. Brouwer; Ulf G. Ahlborg; Martin van den Berg; Linda S. Birnbaum; E. Ruud Boersma; Bart T. C. Bosveld; Michael S. Denison; L. Earl Gray; Lars Hagmar; Edel Holene; M Huisman; Sandra W. Jacobson; Joseph L. Jacobson; Corine Koopman-Esseboom; Janna G. Koppe; Beverly M. Kulig; D.C. Morse; Gina Muckle; Richard E. Peterson; Pieter Sauer; Richard F. Seegal; Annette E. Smits-van Prooije; Bert C.L. Touwen; Nynke Weisglas-Kuperus; Gerhard Winneke

A scientific evaluation was made of functional aspects of developmental toxicity of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in experimental animals and in human infants. Persistent neurobehavioral, reproductive and endocrine alterations were observed in experimental animals, following in utero and lactational exposure to PCBs, PCDDs and PCDFs. The lowest observable adverse effect levels (LOAELs) for developmental neurobehavioral and reproduction endpoints, based on body burden of TCDD-toxic equivalents (TEQs) in animals, are within the range of current background human body burdens. Relatively subtle adverse effects on neurobehavioral development and thyroid hormone alterations have also been observed in infants and children exposed to background levels. Exclusive use of the toxic equivalency factor (TEF) approach may underestimate the risk of neurodevelopmental effects, because both Ah receptor dependent and independent mechanisms may be involved in these effects. The use of marker congeners and/or bioassays based on Ah receptor mediated mechanisms are rapid, low cost pre-screening alternatives for expensive and time consuming gas chromatographic-mass spectrometric analysis.


Pediatrics | 2008

Environmental Factors and Puberty Timing: Expert Panel Research Needs

Germaine M. Buck Louis; L. Earl Gray; Michele Marcus; Sergio R. Ojeda; Ora Hirsch Pescovitz; Selma F. Witchel; Wolfgang G. Sippell; David H. Abbott; Ana M. Soto; Rochelle W. Tyl; Jean-Pierre Bourguignon; Niels E. Skakkebæk; Shanna H. Swan; Mari S. Golub; Martin Wabitsch; Jorma Toppari; Susan Y. Euling

Serono Symposia International convened an expert panel to review the impact of environmental influences on the regulation of pubertal onset and progression while identifying critical data gaps and future research priorities. An expert panel reviewed the literature on endocrine-disrupting chemicals, body size, and puberty. The panel concluded that available experimental animal and human data support a possible role of endocrine-disrupting chemicals and body size in relation to alterations in pubertal onset and progression in boys and girls. Critical data gaps prioritized for future research initiatives include (1) etiologic research that focus on environmentally relevant levels of endocrine-disrupting chemicals and body size in relation to normal puberty as well as its variants, (2) exposure assessment of relevant endocrine-disrupting chemicals during critical windows of human development, and (3) basic research to identify the primary signal(s) for the onset of gonadotropin-releasing hormone–dependent/central puberty and gonadotropin-releasing hormone–independent/peripheral puberty. Prospective studies of couples who are planning pregnancies or pregnant women are needed to capture the continuum of exposures at critical windows while assessing a spectrum of pubertal markers as outcomes. Coupled with comparative species studies, such research may provide insight regarding the causal ordering of events that underlie pubertal onset and progression and their role in the pathway of adult-onset disease.


International Journal of Andrology | 2008

A mixture of seven antiandrogens induces reproductive malformations in rats

Cynthia V. Rider; Johnathan Furr; Vickie S. Wilson; L. Earl Gray

To date, regulatory agencies have not considered conducting cumulative risk assessments for mixtures of chemicals with diverse mechanisms of toxicity because it is assumed that the chemicals will act independently and the individual chemical doses are not additive. However, this assumption is not supported by new research addressing the joint effects of chemicals that disrupt reproductive tract development in the male rat by disrupting the androgen signalling pathway via diverse mechanisms of toxicity [i.e. androgen receptor (AR) antagonism in the reproductive tract vs. inhibition of androgen synthesis in the foetal testis]. In this study, pregnant rats were exposed to four dilutions of a mixture containing vinclozolin, procymidone, linuron, prochloraz, benzyl butyl phthalate, dibutyl phthalate and diethylhexyl phthalate during the period of sexual differentiation and male offspring were assessed for effects on hormone sensitive endpoints including: anogenital distance, infant areolae retention and reproductive tract tissue weights and malformations. The ratio of the chemicals in the mixture was based upon each chemicals ED(50) for inducing reproductive tract malformations (hypospadias or epididymal agenesis). The observed responses from the mixture were compared with predicted responses generated with a toxic equivalency approach and models of dose addition, response addition or integrated addition. As hypothesized, we found that the mixture of chemicals that alter the androgen signalling pathway via diverse mechanisms disrupted male rat reproductive tract differentiation and induced malformations in a cumulative, dose-additive manner. The toxic equivalency and dose addition models provided the best fit to observed responses even though the chemicals do not act via a common cellular mechanism of action. The current regulatory framework for conducting cumulative risk assessments needs to consider the results, including those presented herein, which indicate that chemicals that disrupt foetal tissues during sexual differentiation act in a cumulative, dose-additive manner irrespective of the specific cellular mechanism of toxicity.


Environmental Health Perspectives | 2005

Identification of metabolites of trenbolone acetate in androgenic runoff from a beef feedlot.

Elizabeth J. Durhan; Christy Lambright; Elizabeth A. Makynen; James M. Lazorchak; Phillip C. Hartig; Vickie S. Wilson; L. Earl Gray; Gerald T. Ankley

Little is known concerning the potential ecological effects of hormonally active substances associated with discharges from animal feeding operations. Trenbolone acetate is a synthetic anabolic steroid that is widely used in the United States to promote growth of beef cattle. Metabolites of trenbolone acetate include the stereoisomers 17α- and 17β-trenbolone, both of which are stable in animal wastes and are relatively potent androgens in fish and mammals. Our purpose in this study was to evaluate the occurrence of 17α- and 17β-trenbolone in a beef cattle feedlot discharge and in river water upstream and downstream from the discharge. In conjunction with that effort, we measured in vitro androgenic activity of the discharge using CV-1 cells that had been transiently cotransfected with human androgen receptor and reporter gene constructs. Samples were collected on nine different occasions during 2002 and 2003. Whole-water samples from the discharge caused a significant androgenic response in the CV-1 cells and contained detectable concentrations of 17α- and 17β-trenbolone. Further work is needed to ascertain the degree to which synthetic androgens such as trenbolone contribute to androgenic activity of feedlot discharges.


Toxicology and Industrial Health | 1996

Latent Effects of Pesticides and Toxic Substances On Sexual Differentiation of Rodents

L. Earl Gray; William R. Kelce

In humans and rodents, exposure to hormonally active chemicals during sex differentiation can produce morphological pseudohermaphrodism (Schardein, 1993; Gray, 1992). For example, hormonally active drugs like DES (estrogenic), Danazol (androgenic), and progestins cause urogenital malformations in the reproductive tracts of humans and rodents. The current discussion will present new information on the effects of toxic chemicals and pesticides that act on reproductive development via novel mechanisms, including germ cell toxicity, antiandrogenicity, and Ah-receptor binding. Information will be presented that describes how exposure during critical stages of life to synthetic chemicals present in our environment, such as benzidine- based dyes, antiandrogenic fungicides, 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), and PCB congener 169, result in abnormal rodent sex differentiation. In rodents, perinatal exposure to fetal germ cell toxicants reduced the reproductive potential of female, and permanently reduced sperm production in male progeny. Phenotypic sex differentiation, however, was unaffected by these germ cell toxicants. In contrast, antiandrogenic drugs and fungicides induced profound alterations in phenotypic sex differentiation. Effects such as hypospadias, ectopic testes, vaginal pouches, agenesis of the ventral prostate, and nipple retention in male rats were observed commonly. Although these antiandrogens induced no permanent effects in female progeny, another class of chemicals, the Ah-receptor mediated toxicants, did reduce fertility in both male and female rat offspring. Cauda epididymal sperm numbers were reduced permanently in TCDD-exposed male rat and hamster progeny, and female progeny displayed malformations of the external genitalia. Other toxicants produced dramatic alterations of sex differentiation (uterus unicornis, agenesis of the vas and epididymis, and undescended testes), via mechanisms that have not been characterized yet. Since these adult/pubertal alterations resulted from gestational and/or neonatal exposures, future studies should include a comprehensive assessment of reproductive function after perinatal exposure because the developing animal is extremely sensitive to toxicants during sex differentiation, and many of the effects are difficult to detect until late in life.

Collaboration


Dive into the L. Earl Gray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johnathan Furr

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kembra L. Howdeshell

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christy Lambright

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Gerald T. Ankley

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Joseph Ostby

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Ralph L. Cooper

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Robert J. Kavlock

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge