Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christy Wilson is active.

Publication


Featured researches published by Christy Wilson.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars.

Hsiangkuo Yuan; Christopher G. Khoury; Christy Wilson; Gerald A. Grant; Adam J. Bennett; Tuan Vo-Dinh

UNLABELLED Gold nanostars offer unique plasmon properties that efficiently transduce photon energy into heat for photothermal therapy. Nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross-sections that are tunable in the near-infrared region with relatively low scattering effect, making them efficient photothermal transducers. Here, we demonstrate particle tracking and photothermal ablation both in vitro and in vivo. Using SKBR3 breast cancer cells incubated with bare nanostars, we observed photothermal ablation within 5 minutes of irradiation (980-nm continuous-wave laser, 15 W/cm2). On a mouse injected systemically with PEGylated nanostars for 2 days, extravasation of nanostars was observed and localized photothermal ablation was demonstrated on a dorsal window chamber within 10 minutes of irradiation (785-nm continuous-wave laser, 1.1 W/cm2). These preliminary results of plasmon-enhanced localized hyperthermia are encouraging and have illustrated the potential of gold nanostars as efficient photothermal agents in cancer therapy. FROM THE CLINICAL EDITOR Gold nanostars are tunable in the near-infrared region with low scattering, thus enable photothermal therapy. Encouraging preliminary results of plasmon-enhanced localized hyperthermia both in vitro and in vivo demonstrate that Au nanostars may be efficient photothermal agents for cancer therapy.


Journal of Biomedical Optics | 2011

Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

Quan Liu; Gerald A. Grant; Jianjun Li; Yan Zhang; Fangyao Hu; Shuqin Li; Christy Wilson; Kui Chen; Darell D. Bigner; Tuan Vo-Dinh

We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivity to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.


Neurosurgical Focus | 2015

Therapeutic strategies to improve drug delivery across the blood-brain barrier.

Tej D. Azad; James Pan; Ian D. Connolly; Austin Remington; Christy Wilson; Gerald A. Grant

Resection of brain tumors is followed by chemotherapy and radiation to ablate remaining malignant cell populations. Targeting these populations stands to reduce tumor recurrence and offer the promise of more complete therapy. Thus, improving access to the tumor, while leaving normal brain tissue unscathed, is a critical pursuit. A central challenge in this endeavor lies in the limited delivery of therapeutics to the tumor itself. The blood-brain barrier (BBB) is responsible for much of this difficulty but also provides an essential separation from systemic circulation. Due to the BBBs physical and chemical constraints, many current therapies, from cytotoxic drugs to antibody-based proteins, cannot gain access to the tumor. This review describes the characteristics of the BBB and associated changes wrought by the presence of a tumor. Current strategies for enhancing the delivery of therapies across the BBB to the tumor will be discussed, with a distinction made between strategies that seek to disrupt the BBB and those that aim to circumvent it.


Nanoscale | 2014

Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor

Hsiangkuo Yuan; Christy Wilson; Jun Xia; Sarah L. Doyle; Shuqin Li; Andrew M. Fales; Yang Liu; Ema Ozaki; Kelly Mulfaul; Gabi Hanna; Gregory M. Palmer; Lihong V. Wang; Gerald A. Grant; Tuan Vo-Dinh

Plasmonics-active gold nanostars exhibiting strong imaging contrast and efficient photothermal transduction were synthesized for a novel pulsed laser-modulated plasmonics-enhanced brain tumor microvascular permeabilization. We demonstrate a selective, optically modulated delivery of nanoprobes into the tumor parenchyma with minimal off-target distribution.


Ultrasound in Medicine and Biology | 2011

Dual-Mode IVUS Transducer for Image-Guided Brain Therapy: Preliminary Experiments

Carl D. Herickhoff; Christy Wilson; Gerald A. Grant; Gavin W. Britz; Edward D. Light; Mark L. Palmeri; Patrick D. Wolf; Stephen W. Smith

In this study, we investigated the feasibility of using 3.5-Fr IVUS catheters for minimally-invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility is demonstrated in two ways: 1) by fitting a 3.5-Fr IVUS catheter with a 5 × 0.5 × 0.22 mm PZT-4 transducer for 9-MHz imaging, and 2) by testing an identical transducer for therapy potential with 3.3-MHz CW excitation. The imaging transducers performance was compared to a 9-Fr, 9-MHz ICE catheter as a gold standard, visualizing a 2.5-cm cyst phantom and a postmortem ovine brain. The therapy transducer was able to maintain a power output of 700 mW, achieving a temperature rise of +19°C at a depth of 1.5 mm in excised brain tumor tissue.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery

Xinyi Jiang; Sergio Fitch; Christine Wang; Christy Wilson; Jianfeng Li; Gerald A. Grant; Fan Yang

Significance Current treatment for glioblastoma multiforme (GBM) fails to address its highly infiltrative nature; treatment often leaves behind microscopic neoplastic satellites, resulting in eventual tumor recurrence. Here we report polymeric nanoparticle-engineered human adipose-derived stem cells (hADSCs) overexpressing the cancer-specific TNF-related apoptosis-inducing ligand for targeting and eradicating glioblastoma cells. Engineered hADSCs exhibited long-range directional migration toward tumor in patient-derived GBM orthotropic xenografts and showed significant inhibition of tumor growth and extension of animal survival. Repetitive injection further prolonged animal survival compared with single injection. Together, our data suggest that nanoparticle-engineered hADSCs exhibit the therapeutically relevant behavior of “seek-and-destroy” tumortropic migration, and may offer a promising therapy for substantial enhancement of GBM treatment. Glioblastoma multiforme (GBM) is one of the most intractable of human cancers, principally because of the highly infiltrative nature of these neoplasms. Tracking and eradicating infiltrating GBM cells and tumor microsatellites is of utmost importance for the treatment of this devastating disease, yet effective strategies remain elusive. Here we report polymeric nanoparticle-engineered human adipose-derived stem cells (hADSCs) overexpressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as drug-delivery vehicles for targeting and eradicating GBM cells in vivo. Our results showed that polymeric nanoparticle-mediated transfection led to robust up-regulation of TRAIL in hADSCs, and that TRAIL-expressing hADSCs induced tumor-specific apoptosis. When transplanted in a mouse intracranial xenograft model of patient-derived glioblastoma cells, hADSCs exhibited long-range directional migration and infiltration toward GBM tumor. Importantly, TRAIL-overexpressing hADSCs inhibited GBM growth, extended survival, and reduced the occurrence of microsatellites. Repetitive injection of TRAIL-overexpressing hADSCs significantly prolonged animal survival compared with single injection of these cells. Taken together, our data suggest that nanoparticle-engineered TRAIL-expressing hADSCs exhibit the therapeutically relevant behavior of “seek-and-destroy” tumortropic migration and could be a promising therapeutic approach to improve the treatment outcomes of patients with malignant brain tumors.


Biomedical Optics Express | 2013

Feasibility study of brain tumor delineation using immunolabeled gold nanorods.

Kevin Seekell; Spencer Lewis; Christy Wilson; Shuqin Li; Gerald A. Grant; Adam Wax

Effective treatment of patients with malignant brain tumors requires surgical resection of a high percentage of the bulk tumor. Surgeons require a method that enables delineation of tumor margins, which are not visually distinct by eye. In this study, the feasibility of using gold nanorods (GNRs) for this purpose is evaluated. Anti-Epidermal Growth Factor Receptor (anti-EGFR) conjugated GNRs are used to label human xenograft glioblastoma multiforme (GBM) tumors embedded within slices of brain tissues from healthy nude mice. The anti-EGFR GNRs exhibit enhanced absorption at red to near-infrared wavelengths, often referred to as the tissue optical window, where absorption from blood is minimal. To enable definition of molecular specificity and spatial accuracy of the label, the GNR absorption is compared with GFP fluorescence which is expressed by the GBM cells used here. This work demonstrates a simple but highly translational technique to classify normal and malignant brain tissue regions in open surgery applications using immunolabeled GNR contrast agents.


Ultrasonic Imaging | 2013

Intracranial Dual-Mode IVUS and Hyperthermia Using Circular Arrays Preliminary Experiments

Vivek Patel; Edward D. Light; Carl D. Herickhoff; Gerald A. Grant; Gavin W. Britz; Christy Wilson; Mark L. Palmeri; Stephen W. Smith

In this study, we investigated the feasibility of using 3.5-Fr (3 Fr = 1 mm) circular phased-array intravascular ultrasound (IVUS) catheters for minimally invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility was demonstrated in two ways: (1) by inserting a 3.5-Fr IVUS catheter through skull burr holes, for 20 MHz brain imaging in the pig model, and (2) by testing a modified circular array for therapy potential with 18.5-MHz and 9-MHz continuous wave (CW) excitation. The imaging transducer’s performance was superior to our previous 9-MHz mechanical IVUS prototype. The therapy catheter transducer was driven by CW electrical power at 18.5 MHz, achieving temperature changes reaching +8°C at a depth of 2 mm in a human glioblastoma grown on the flank of a mouse with minimal transducer resistive heating of +2°C. Further hyperthermia trials showed that 9-MHz CW excitation produced temperature changes of +4.5°C at a depth of 12 mm—a sufficient temperature rise for our long-term goal of targeted, controlled drug release via thermosensitive liposomes for therapeutic treatment of 1-cm-diameter glioblastomas.


Journal of Biophotonics | 2016

Tracking mesenchymal stromal cells using an ultra-bright TAT-functionalized plasmonic-active nanoplatform

Hsiangkuo Yuan; Jose A. Gomez; Jennifer S. Chien; Lunan Zhang; Christy Wilson; Shuqin Li; Andrew M. Fales; Yang Liu; Gerald A. Grant; Maria Mirotsou; Victor J. Dzau; Tuan Vo-Dinh

High-resolution tracking of stem cells remains a challenging task. An ultra-bright contrast agent with extended intracellular retention is suitable for in vivo high-resolution tracking of stem cells following the implantation. Here, a plasmonic-active nanoplatform was developed for tracking mesenchymal stromal cells (MSCs) in mice. The nanoplatform consisted of TAT peptide-functionalized gold nanostars (TAT-GNS) that emit ultra-bright two-photon photoluminescence capable of tracking MSCs under high-resolution optical imaging. In vitro experiment showed TAT-GNS-labeled MSCs retained a similar differentiability to that of non-labeled MSCs controls. Due to their star shape, TAT-GNS exhibited greater intracellular retention than that of commercial Q-Tracker. In vivo imaging of TAT-GNS-labeled MSCs five days following intra-arterial injections in mice kidneys showed possible MSCs implantation in juxta-glomerular (JG) regions, but non-specifically in glomeruli and afferent arterioles as well. With future design to optimize GNS labeling specificity and clearance, plasmonic-active nanoplatforms may be a useful intracellular tracking tool for stem cell research. An ultra-bright intracellular contrast agent is developed using TAT peptide-functionalized gold nanostars (TAT-GNS). It poses minimal influence on the stem cell differentiability. It exhibits stronger two-photon photoluminescence and superior labeling efficiency than commercial Q-Tracker. Following renal implantation, some TAT-GNS-labeled MSCs permeate blood vessels and migrate to the juxta-glomerular region.


Proceedings of SPIE | 2014

Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

Hsiangkuo Yuan; Christy Wilson; Shuqin Li; Andrew M. Fales; Yang Liu; Gerald A. Grant; Tuan Vo-Dinh

Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed “theranostics” potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

Collaboration


Dive into the Christy Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gavin W. Britz

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge