Chuan-Chuan Wei
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chuan-Chuan Wei.
Journal of Nutrition | 2017
Chuan-Chuan Wei; Kun Wu; Yan Gao; Li-Han Zhang; Dan-Dan Li; Zhi Luo
Background: Magnesium influences hepatic lipid deposition in vertebrates, but the underlying mechanism is unknown.Objective: We used yellow catfish and their isolated hepatocytes to test the hypothesis that magnesium influences lipid deposition by modulating lipogenesis and lipolysis.Methods: Juvenile yellow catfish (mean ± SEM weight: 3.43 ± 0.02 g, 3 mo old, mixed sex) were fed a 0.14- (low), 0.87- (intermediate) or 2.11- (high) g Mg/kg diet for 56 d. Primary hepatocytes were incubated for 48 h in control or MgSO4-containing medium with or without 2-h pretreatment with an inhibitor (AG490, GW6471, or Compound C). Growth performance, cell viability, triglyceride (TG) concentrations, and expression of enzymes and genes involved in lipid metabolism were measured. Results: Compared with fish fed low magnesium, those fed intermediate or high magnesium had lower hepatic lipids (18%, 22%) and 6-phosphogluconate dehydrogenase (6PGD; 3.7%, 3.8%) and malic enzyme (ME; 35%, 48%) activities and greater mRNA levels of the lipolytic genes adipose triacylglyceride lipase (atgl; 82% and 1.7-fold) and peroxisome proliferator-activated receptor (ppara; 18% and 1.0-fold), respectively (P < 0.05). Relative mRNA levels of AMP-activated protein kinase (ampk) a1, ampka2, ampkb1, ampkb2, ampkg1a, ampkg1b, Janus kinase (jak) 2a, jak2b, and signal transducers and activators of transcription (stat) 3 in fish fed high magnesium were higher (24% to 3.1-fold, P < 0.05) than in those fed low or intermediate magnesium. Compared with cells incubated with MgSO4 alone, those incubated with MgSO4 and pretreated with AG490, GW6471, or Compound C had greater TG concentrations (42%, 31%, or 56%), g6pd (98%, 59%, or 51%), 6pgd (68%, 73%, or 32%) mRNA expression, and activities of G6PD (35%, 45%, or 16%) and ME (1.5-fold, 1.3-fold, or 13%), and reduced upregulation (61%, 25%, or 45%) of the lipolytic gene, atgl (P < 0.05).Conclusions: Magnesium reduced hepatic lipid accumulation in yellow catfish and the variation might be attributed to inhibited lipogenesis and increased lipolysis. PPARA, JAK-STAT, and AMPK pathways mediated the magnesium-induced changes in lipid deposition and metabolism. These results offer new insight into magnesium nutrition in vertebrates.
Environmental Pollution | 2017
Yu–Feng Song; Christer Hogstrand; Chuan-Chuan Wei; Kun Wu; Ya–Xiong Pan; Zhi Luo
The present study was performed to determine the effect of Zn exposure influencing endoplasmic reticulum (ER) stress, explore the underlying molecular mechanism of Zn-induced hepatic lipolysis in a fish species of significance for aquaculture, yellow catfish Pelteobagrus fulvidraco. We found that waterborne Zn exposure evoked ER stress and unfolded protein response (UPR), and activated cAMP/PKA pathway, and up-regulated hepatic lipolysis. The increase in ER stress and lipolysis were associated with activation of cAMP/PKA signaling pathway. Zn also induced an increase in intracellular Ca2+ level, which could be partially prevented by dantrolene (RyR receptor inhibitor) and 2-APB (IP3 receptor inhibitor), demonstrating that the disturbed Ca2+ homeostasis in ER contributed to ER stress and dysregulation of lipolysis. Inhibition of ER stress by PBA attenuated UPR, inhibited the activation of cAMP/PKA pathway and resulted in down-regulation of lipolysis. Inhibition of protein kinase RNA-activated-like ER kinase (PERK) by GSK2656157 and inositol-requiring enzyme (IRE) by STF-083010 differentially influenced Zn-induced changes of lipid metabolism, indicating that PERK and IRE pathways played different regulatory roles in Zn-induced lipolysis. Inhibition of PKA by H89 blocked the Zn-induced activation of cAMP/PKA pathway with a concomitant inhibition of ER stress-mediated lipolysis. Taken together, our findings highlight the importance of the ER stress-cAMP/PKA axis in Zn-induced lipolysis, which provides new insights into Zn toxicology in fish and probably in other vertebrates.
International Journal of Molecular Sciences | 2016
Kun Wu; Xiao-Ying Tan; Chuan-Chuan Wei; Wen-Jing You; Mei-Qin Zhuo; Yu-Feng Song
Signal transducers and activators of transcription proteins (STATs) act as important mediators in multiple biological processes induced by a large number of cytokines. In the present study, full-length cDNA sequences of seven STAT members, including some splicing variants different from those in mammals, were obtained from Synechogobius hasta. The phylogenetic analysis revealed that the seven STAT members were derived from paralogous genes that might have arisen by whole genome duplication (WGD) events during vertebrate evolution. All of these members share similar domain structure compared with those of mammals, and were widely expressed across the tested tissues (brain, gill, heart, intestine, liver, muscle and spleen), but at variable levels. Incubation in vitro of recombinant human leptin changed the intracellular triglyceride (TG) content and mRNA levels of several STATs members, as well as expressions and activities of genes involved in lipid metabolism. Furthermore, Tyrphostin B42 (AG490), a specific inhibitor of the Janus Kinase 2(JAK2)-STAT pathway, partially reversed leptin-induced change on STAT3 and its two spliced isoforms expression, as well as expressions and activities of genes involved in lipid metabolism. As a consequence, the decrease of TG content was also reversed. Thus, our study suggests that STAT3 is the requisite for the leptin signal and the activation of the STAT3 member may account for the leptin-induced changes in lipid metabolism in S. hasta.
Aquatic Toxicology | 2018
Ya-Xiong Pan; Zhi Luo; Mei-Qing Zhuo; Chuan-Chuan Wei; Guang-Hui Chen; Yu-Feng Song
The present study was performed to determine the effect of waterborne CdCl2 exposure influencing lipid deposition and metabolism, oxidative stress and mitochondrial dysfunction, and explore the underlying molecular mechanism of cadmium (Cd)-induced disorder of hepatic lipid metabolism in fish. To this end, adult zebrafish were exposed to three waterborne CdCl2 concentrations (0(control), 5 and 25 μg Cd/l, respectively) for 30 days. Lipid accumulation, the activities of enzymes related to lipid metabolism and oxidative stress, as well as the expression level of genes involved in lipid metabolism and mitophagy were determined in the liver of zebrafish. Waterborne CdCl2 exposure increased hepatic triglyceride (TG) and Cd accumulation, the activities of fatty acid synthase (FAS), 6-phosphogluconate dehydrogenase (6PGD), glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), and the mRNA level of fatty acid synthase (fas), acetyl-CoA carboxylase alpha (acaca), glucose 6-phosphate dehydrogenase (g6pd) and malic enzyme (me), but reduced the mRNA level of carnitine palmitoyl transferase 1 (cpt1), hormone-sensitive lipase alpha (hsla), and adipose triacylglyceride lipase (atgl). The activities of superoxide dismutase (SOD), glutathoinine peroxidase (GPx) and cytochrome c oxidase (COX) and the ATP level were significantly reduced after CdCl2 exposure. CdCl2 exposure significantly increased the mRNA level of genes (microtubule-associated protein light chain 3 alpha (lc3a), PTEN-induced putative kinase 1 (pink1), NIP3-like protein X (nix) and PARKIN (parkin)) related to mitophagy. To elucidate the mechanism, reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and the mitochondrial permeability transition (MPT) inhibitor cyclosporine A (CsA) were used to verify the role of ROS and mitochondrial dysfunction in Cd-induced disorder of lipid metabolism. NAC pretreatment reversed the Cd-induced up-regulation of TG accumulation and activities of lipogenic enzymes, and the Cd-induced down-regulation of mRNA levels of lipolytic genes. Meanwhile, NAC pretreatment also blocked the mitochondrial membrane potential (MMP) collapse and decreased the ATP level, suggesting that ROS played a crucial role in regulating the Cd-induced mitochondrial dysfunction. Taken together, our findings, for the first time, highlight the importance of the oxidative stress and mitochondrial dysfunction in Cd-induced disorder of hepatic lipid metabolism, which proposed a novel mechanism for elucidating metal element exposure inducing the disorder of lipid metabolism in vertebrates.
Comparative Biochemistry and Physiology B | 2016
Zhi Luo; Chuan-Chuan Wei; Han-Mei Ye; Hai-Ping Zhao; Yu-Feng Song; Kun Wu
The present experiment was conducted to determine the effect and mechanism of dietary choline levels on growth performance and lipid deposition of yellow catfish Pelteobagrus fulvidraco. Dietary choline was included at three levels of 239.2 (control (without extra choline addition), 1156.4 and 2273.6mg choline per kg diet, respectively) and fed to yellow catfish (mean initial weight: 3.45±0.02g mean±standard errors of mean (SEM)) for 8weeks. Fish fed the diet containing 1156.4mgkg-1 choline showed the higher weight gain (WG), specific growth rate (SGR) and feed intake (FI), but the lower feed conversion rate (FCR), than those in control and highest choline group. Hepatosomatic index (HSI) and hepatic lipid content declined with increasing dietary choline levels. Muscle lipid content was the lowest for fish fed adequate choline diets and showed no significant difference between other two groups. Choline contents in liver and muscle increased with increasing dietary choline levels. Dietary choline levels significantly influenced mRNA levels of genes involved in lipid homeostasis in muscle and liver, such as CTP:phosphocholine cytidylyltransferase a (CCTa), phosphatidylethanolamine N-methyl-transferase (PEMT), microsomal triglyceride transfer protein (MTP), apolipoprotein b (APOBb), apolipoprotein E (ApoE) and lipoprotein lipase (LPL), and effects of dietary choline levels on lipid deposition and metabolism were tissue-specific. Different responses of these genes at the mRNA levels partially explained the profiles of lipid deposition in liver and muscle for fish fed different choline diets. To our knowledge, this is the first to explore the effect of dietary choline level on mRNA expression of these genes, which provides new insights into choline nutrition in fish.
Journal of Trace Elements in Medicine and Biology | 2017
Jie Cheng; Zhi Luo; Guang-Hui Chen; Chuan-Chuan Wei; Mei-Qin Zhuo
The present working hypothesis is that absorption of dietary Cu is related to mRNA expressions of genes involved in Cu uptake and transport of the intestine in fish. To this end, the full-length cDNA sequences of eight Cu uptake related genes, including two isoforms of copper transporter genes (ctr1 and ctr2), three copper chaperone genes (atox1, ccs and cox17), two Cu-ATPase genes (atp7a and atp7b) and divalent metal ion transporter 1 (dmt1), were cloned and characterized in yellow catfish P. fulvidraco, respectively. Their mRNA tissue expression and transcriptional responses to dietborne Cu exposure were investigated. Compared to the corresponding members of mammals, all of these members in P. fulvidraco shared the similar conserved domain structures. Their mRNAs were expressed in a wide range of tissues (including liver, muscle, spleen, brain, gill, intestine, heart and kidney), but at variable levels. In anterior intestine, mRNA levels of ctr1, cox17, dmt1 and atp7a declined with increasing dietary Cu levels. The mRNA levels of ctr2 and mt were the highest for excess dietary Cu group and showed no significant differences between other two treatments. Atox1 mRNA levels were the highest for Cu-deficient group and showed no significant differences between other two treatments. The mRNA levels of ccs were the highest for Cu-deficient group, followed by Cu-excess group and the lowest for adequate-Cu group. In contrast, atp7b mRNA levels were the highest for Cu-excess group and the lowest for adequate Cu group. In the mid-intestine, mRNA levels of ctr1, ctr2, atox1, ccs, cox17, dmt1 and atp7a declined with increasing dietary Cu levels. Atp7b mRNA levels were the lowest for adequate Cu group and showed no significant differences between other two treatments. Mt mRNA levels were the lowest for adequate Cu group and highest for Cu-excess group. For the first time, our study cloned and characterized ctr1, ctr2, atox1, ccs, cox17, atp7a, atp7b and dmt1 genes in P. fulvidraco and determined their tissue-specific expression, and transcriptional responses in the anterior and mid-intestine of yellow catfish under dietborne Cu exposure, which shed new light on the Cu uptake system and help to understand the molecular mechanisms of Cu homeostasis in fish.
The FASEB Journal | 2018
Chuan-Chuan Wei; Zhi Luo; Christer Hogstrand; Yi-Huan Xu; Li-Xiang Wu; Guang-Hui Chen; Ya-Xiong Pan; Yu-Feng Song
Zinc (Zn) deficiency is the most consistently discovered nutritional manifestations of fatty liver disease. Although Zn is known to stimulate hepatic lipid oxidation, little is known about its underlying mechanism of action in lipolysis. Given the potential role of lipophagy in lipid metabolism, the purpose of this study was to test the hypothesis that Zn attenuates hepatic lipid accumulation by modulating lipophagy. The present study indicated that Zn is a potent promoter of lipophagy. Zn administration significantly alleviated hepatocellular lipid accumulation and increased the release of free fatty acids in association with enhanced fatty acid oxidation and inhibited lipogenesis, which was accompanied by activation of autophagy. Moreover, Zn reduced lipid accumulation and stimulated lipolysis by autophagy‐mediated lipophagy. Zn‐induced up‐regulation of autophagy and lipid depletion is free Zn2+‐dependent in the cytosols. Zn‐induced autophagy and lipid turnover involved up‐regulation of the calcium/calmodulin‐dependent protein kinase kinase‐β (Ca2+/CaMKKβ)/AMPK pathway. Meanwhile, Zn2+‐activated autophagy and lipid depletion were via enhancing metal response element‐binding transcription factor (MTF)‐1 DNA binding at PPARα promoter region, which in turn induced transcriptional activation of the key genes related to autophagy and lipolysis. Zn activated the pathways of Zn2+/MTF‐1/ Peroxisome proliferator‐activated receptor (PPAR)α and Ca2+/CaMKKβ/AMPK, resulting in the up‐regulation of lipophagy and accordingly reduced hepatic lipid accumulation. Our study, for the first time, provided innovative evidence of the direct relationship between metal elements (Zn) and lipid metabolism. The present study also indicated the novel mechanism for Zn‐induced lipolysis by the activation of Zn2+/MTF‐1/PPARα and Ca2+/CaMKKβ/AMPK pathways, which induced the occurrence of lipophagy. These results provide new insight into Zn nutrition and its potential beneficial effects on the prevention of fatty liver disease in vertebrates.—Wei, C.‐C., Luo, Z., Hogstrand, C., Xu, Y.‐H., Wu, L.‐X., Chen, G.‐H., Pan, Y.‐X., Song, Y.‐F. Zinc reduces hepatic lipid deposition and activates lipophagy via Zn2+/MTF‐1/PPARα and Ca2+/CaMKKβ/AMPK pathways. FASEB J. 32, 6666–6680 (2018). www.fasebj.org
Gene | 2017
Dan-Dan Li; Zhi Luo; Guang-Hui Chen; Yu-Feng Song; Chuan-Chuan Wei; Ya-Xiong Pan
Apoptosis plays a key role in the physiology of multicellular organisms, and has been well studied in mammals, but not in teleosts. Zinc (Zn) has been shown to be an important regulator of apoptosis and apoptosis involves in the regulation of lipid metabolism. Moreover, our recent study indicated that waterborne and dietborne Zn exposure differently influenced lipid metabolism in Pelteobagrus fulvidraco, but further mechanism remained unknown. The hypothesis of the present study is that apoptosis mediated the Zn-induced changes of lipid metabolism of P. fulvidraco subjected to different exposure pathways. To this end, we cloned full-length cDNA sequences of Bcl2 and three Bax subtypes involved in apoptosis in P. fulvidraco, explored their mRNA expressions in responses to different Zn exposure pathways. Bcl2 and three Bax subtypes shared similar domain structure as typical pro- and anti-apoptotic Bcl2 family members. Their mRNAs were widely expressed among various tissues, but at variable levels. Waterborne Zn exposure down-regulated mRNA levels of Baxg and ratios of Baxa/Bcl2, and Baxg/Bcl2, but showed no significant effects on mRNA abundances of Bcl2, Baxa and Baxb, and the ratio of Baxb/Bcl2. In contrast, dietborne Zn exposure up-regulated mRNA levels of Bcl2, Baxa, Baxb and Baxg, but reduced the ratios of Baxa/Bcl2, Baxb/Bcl2, and Baxg/Bcl2. Considering their important roles of these genes in apoptosis induced by Zn, apoptosis may mediate the Zn-induced changes of hepatic lipid metabolism of Pelteobagrus fulvidraco under different Zn exposure pathways. For the first time, we characterized the full-length cDNA sequences of Bcl2 and three Bax subtypes, determined their expression profiles and transcriptional responses to different Zn exposure pathways, which would contribute to our understanding of the molecular basis of apoptosis, and also provide new insights into physiological responses to different Zn exposure pathways.
Environmental Science & Technology | 2018
Kun Wu; Zhi Luo; Christer Hogstrand; Guang-Hui Chen; Chuan-Chuan Wei; Dan-Dan Li
The hypothesis of our study was that waterborne Zn exposure evoked phospholipids (PL) biosynthesis to compensate for the loss of membrane integrity, and the pathways of oxidative stress and endoplasmic reticulum (ER) stress mediated the Zn-evoked changes of PL biosynthesis. Thus, we conducted RNA sequencing to analyze the differences in the intestinal transcriptomes between the control and Zn-treated P. fulvidraco. The 56-day Zn exposure increased the intestinal Zn accumulation, and mRNA levels of 816 genes were markedly up-regulated, while that of 263 genes were down-regulated. Many differentially expressed genes in the pathways of PL biosynthesis and protein processing in ER were identified. Their expression profiles indicated that waterborne Zn exposure injured protein metabolism, induced PL biosynthesis caused oxidative stress and ER stress, and activated the unfolded protein response. Then, using the primary enterocytes, we identified the mechanism of oxidative and ER stress mediating Zn-induced PL biosynthesis, and indicated that the activation of these pathways constituted adaptive mechanisms to reduce Zn toxicity. Our study demonstrated that Zn exposure via the water increased Zn accumulation and PL biosynthesis, and that oxidative stress and ER stress were interdependent and mediated the Zn-induced PL biosynthesis of the intestine in the freshwater teleost.
Chemosphere | 2017
Chuan-Chuan Wei; Zhi Luo; Yu-Feng Song; Ya-Xiong Pan; Kun Wu; Wen-Jing You