Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guang-Hui Chen is active.

Publication


Featured researches published by Guang-Hui Chen.


Aquatic Toxicology | 2018

Oxidative stress and mitochondrial dysfunction mediated Cd-induced hepatic lipid accumulation in zebrafish Danio rerio

Ya-Xiong Pan; Zhi Luo; Mei-Qing Zhuo; Chuan-Chuan Wei; Guang-Hui Chen; Yu-Feng Song

The present study was performed to determine the effect of waterborne CdCl2 exposure influencing lipid deposition and metabolism, oxidative stress and mitochondrial dysfunction, and explore the underlying molecular mechanism of cadmium (Cd)-induced disorder of hepatic lipid metabolism in fish. To this end, adult zebrafish were exposed to three waterborne CdCl2 concentrations (0(control), 5 and 25 μg Cd/l, respectively) for 30 days. Lipid accumulation, the activities of enzymes related to lipid metabolism and oxidative stress, as well as the expression level of genes involved in lipid metabolism and mitophagy were determined in the liver of zebrafish. Waterborne CdCl2 exposure increased hepatic triglyceride (TG) and Cd accumulation, the activities of fatty acid synthase (FAS), 6-phosphogluconate dehydrogenase (6PGD), glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), and the mRNA level of fatty acid synthase (fas), acetyl-CoA carboxylase alpha (acaca), glucose 6-phosphate dehydrogenase (g6pd) and malic enzyme (me), but reduced the mRNA level of carnitine palmitoyl transferase 1 (cpt1), hormone-sensitive lipase alpha (hsla), and adipose triacylglyceride lipase (atgl). The activities of superoxide dismutase (SOD), glutathoinine peroxidase (GPx) and cytochrome c oxidase (COX) and the ATP level were significantly reduced after CdCl2 exposure. CdCl2 exposure significantly increased the mRNA level of genes (microtubule-associated protein light chain 3 alpha (lc3a), PTEN-induced putative kinase 1 (pink1), NIP3-like protein X (nix) and PARKIN (parkin)) related to mitophagy. To elucidate the mechanism, reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and the mitochondrial permeability transition (MPT) inhibitor cyclosporine A (CsA) were used to verify the role of ROS and mitochondrial dysfunction in Cd-induced disorder of lipid metabolism. NAC pretreatment reversed the Cd-induced up-regulation of TG accumulation and activities of lipogenic enzymes, and the Cd-induced down-regulation of mRNA levels of lipolytic genes. Meanwhile, NAC pretreatment also blocked the mitochondrial membrane potential (MMP) collapse and decreased the ATP level, suggesting that ROS played a crucial role in regulating the Cd-induced mitochondrial dysfunction. Taken together, our findings, for the first time, highlight the importance of the oxidative stress and mitochondrial dysfunction in Cd-induced disorder of hepatic lipid metabolism, which proposed a novel mechanism for elucidating metal element exposure inducing the disorder of lipid metabolism in vertebrates.


Journal of Trace Elements in Medicine and Biology | 2017

Identification of eight copper (Cu) uptake related genes from yellow catfish Pelteobagrus fulvidraco, and their tissue expression and transcriptional responses to dietborne Cu exposure

Jie Cheng; Zhi Luo; Guang-Hui Chen; Chuan-Chuan Wei; Mei-Qin Zhuo

The present working hypothesis is that absorption of dietary Cu is related to mRNA expressions of genes involved in Cu uptake and transport of the intestine in fish. To this end, the full-length cDNA sequences of eight Cu uptake related genes, including two isoforms of copper transporter genes (ctr1 and ctr2), three copper chaperone genes (atox1, ccs and cox17), two Cu-ATPase genes (atp7a and atp7b) and divalent metal ion transporter 1 (dmt1), were cloned and characterized in yellow catfish P. fulvidraco, respectively. Their mRNA tissue expression and transcriptional responses to dietborne Cu exposure were investigated. Compared to the corresponding members of mammals, all of these members in P. fulvidraco shared the similar conserved domain structures. Their mRNAs were expressed in a wide range of tissues (including liver, muscle, spleen, brain, gill, intestine, heart and kidney), but at variable levels. In anterior intestine, mRNA levels of ctr1, cox17, dmt1 and atp7a declined with increasing dietary Cu levels. The mRNA levels of ctr2 and mt were the highest for excess dietary Cu group and showed no significant differences between other two treatments. Atox1 mRNA levels were the highest for Cu-deficient group and showed no significant differences between other two treatments. The mRNA levels of ccs were the highest for Cu-deficient group, followed by Cu-excess group and the lowest for adequate-Cu group. In contrast, atp7b mRNA levels were the highest for Cu-excess group and the lowest for adequate Cu group. In the mid-intestine, mRNA levels of ctr1, ctr2, atox1, ccs, cox17, dmt1 and atp7a declined with increasing dietary Cu levels. Atp7b mRNA levels were the lowest for adequate Cu group and showed no significant differences between other two treatments. Mt mRNA levels were the lowest for adequate Cu group and highest for Cu-excess group. For the first time, our study cloned and characterized ctr1, ctr2, atox1, ccs, cox17, atp7a, atp7b and dmt1 genes in P. fulvidraco and determined their tissue-specific expression, and transcriptional responses in the anterior and mid-intestine of yellow catfish under dietborne Cu exposure, which shed new light on the Cu uptake system and help to understand the molecular mechanisms of Cu homeostasis in fish.


The FASEB Journal | 2018

Zinc reduces hepatic lipid deposition and activates lipophagy via Zn2+/MTF-1/PPARα and Ca2+/CaMKKβ/AMPK pathways

Chuan-Chuan Wei; Zhi Luo; Christer Hogstrand; Yi-Huan Xu; Li-Xiang Wu; Guang-Hui Chen; Ya-Xiong Pan; Yu-Feng Song

Zinc (Zn) deficiency is the most consistently discovered nutritional manifestations of fatty liver disease. Although Zn is known to stimulate hepatic lipid oxidation, little is known about its underlying mechanism of action in lipolysis. Given the potential role of lipophagy in lipid metabolism, the purpose of this study was to test the hypothesis that Zn attenuates hepatic lipid accumulation by modulating lipophagy. The present study indicated that Zn is a potent promoter of lipophagy. Zn administration significantly alleviated hepatocellular lipid accumulation and increased the release of free fatty acids in association with enhanced fatty acid oxidation and inhibited lipogenesis, which was accompanied by activation of autophagy. Moreover, Zn reduced lipid accumulation and stimulated lipolysis by autophagy‐mediated lipophagy. Zn‐induced up‐regulation of autophagy and lipid depletion is free Zn2+‐dependent in the cytosols. Zn‐induced autophagy and lipid turnover involved up‐regulation of the calcium/calmodulin‐dependent protein kinase kinase‐β (Ca2+/CaMKKβ)/AMPK pathway. Meanwhile, Zn2+‐activated autophagy and lipid depletion were via enhancing metal response element‐binding transcription factor (MTF)‐1 DNA binding at PPARα promoter region, which in turn induced transcriptional activation of the key genes related to autophagy and lipolysis. Zn activated the pathways of Zn2+/MTF‐1/ Peroxisome proliferator‐activated receptor (PPAR)α and Ca2+/CaMKKβ/AMPK, resulting in the up‐regulation of lipophagy and accordingly reduced hepatic lipid accumulation. Our study, for the first time, provided innovative evidence of the direct relationship between metal elements (Zn) and lipid metabolism. The present study also indicated the novel mechanism for Zn‐induced lipolysis by the activation of Zn2+/MTF‐1/PPARα and Ca2+/CaMKKβ/AMPK pathways, which induced the occurrence of lipophagy. These results provide new insight into Zn nutrition and its potential beneficial effects on the prevention of fatty liver disease in vertebrates.—Wei, C.‐C., Luo, Z., Hogstrand, C., Xu, Y.‐H., Wu, L.‐X., Chen, G.‐H., Pan, Y.‐X., Song, Y.‐F. Zinc reduces hepatic lipid deposition and activates lipophagy via Zn2+/MTF‐1/PPARα and Ca2+/CaMKKβ/AMPK pathways. FASEB J. 32, 6666–6680 (2018). www.fasebj.org


Ecotoxicology and Environmental Safety | 2018

Waterborne Zn influenced Zn uptake and lipid metabolism in two intestinal regions of juvenile goby Synechogobius hasta

Shi-Cheng Ling; Zhi Luo; Guang-Hui Chen; Dian-Guang Zhang; Xu Liu

The present study explored the influence of Zn addition in the water on Zn transport and lipid metabolism of two intestinal regions in goby Synechogobius hasta. Zn contents in water were 0.004 (control), 0.181 and 0.361mg Zn L-1, respectively. The experiment lasted for 28 days. TG and Zn contents, mRNA contents of genes of Zn transport and lipid metabolism, and enzyme activity from anterior and mid-intestine tissues were analyzed. In anterior intestine, Zn addition in the water increased Zn contents, and mRNA concentrations of ZIP4, ZIP5, ATGL, PPARα, ZNF202 and KLF7, decreased TG contents, 6PGD and G6PD activities, and mRNA contents of 6PGD, G6PD, FAS, PPARγ, ICDH and KLF4. In mid-intestine tissue, the highest Zn and TG contents were observed for 0.18mg Zn/l group, in parallel with the highest expressions of ZnT1, ZIP4, ZIP5, 6PGD, FAS, ICDH, PPARγ, PPARα, ZNF202, KLF4 and KLF7, and with the highest FAS, 6PGD and G6PD activities. Thus, in the anterior intestine, Zn addition increased lipolysis and decreased lipogenesis, and accordingly reduced TG content. However, the highest mid-intestinal TG content in 0.18mg Zn/l group was due to the up-regulated lipogenesis. Although lipolysis was also increased, the incremental lipid synthesis was enough to compensate for lipid degradation, which led TG accumulation. Our results, for the first time, show an anterior/mid functional regionalization of the intestine in lipid metabolism and Zn transport of S. hasta following Zn exposure.


Gene | 2017

Identification of apoptosis-related genes Bcl2 and Bax from yellow catfish Pelteobagrus fulvidraco and their transcriptional responses to waterborne and dietborne zinc exposure

Dan-Dan Li; Zhi Luo; Guang-Hui Chen; Yu-Feng Song; Chuan-Chuan Wei; Ya-Xiong Pan

Apoptosis plays a key role in the physiology of multicellular organisms, and has been well studied in mammals, but not in teleosts. Zinc (Zn) has been shown to be an important regulator of apoptosis and apoptosis involves in the regulation of lipid metabolism. Moreover, our recent study indicated that waterborne and dietborne Zn exposure differently influenced lipid metabolism in Pelteobagrus fulvidraco, but further mechanism remained unknown. The hypothesis of the present study is that apoptosis mediated the Zn-induced changes of lipid metabolism of P. fulvidraco subjected to different exposure pathways. To this end, we cloned full-length cDNA sequences of Bcl2 and three Bax subtypes involved in apoptosis in P. fulvidraco, explored their mRNA expressions in responses to different Zn exposure pathways. Bcl2 and three Bax subtypes shared similar domain structure as typical pro- and anti-apoptotic Bcl2 family members. Their mRNAs were widely expressed among various tissues, but at variable levels. Waterborne Zn exposure down-regulated mRNA levels of Baxg and ratios of Baxa/Bcl2, and Baxg/Bcl2, but showed no significant effects on mRNA abundances of Bcl2, Baxa and Baxb, and the ratio of Baxb/Bcl2. In contrast, dietborne Zn exposure up-regulated mRNA levels of Bcl2, Baxa, Baxb and Baxg, but reduced the ratios of Baxa/Bcl2, Baxb/Bcl2, and Baxg/Bcl2. Considering their important roles of these genes in apoptosis induced by Zn, apoptosis may mediate the Zn-induced changes of hepatic lipid metabolism of Pelteobagrus fulvidraco under different Zn exposure pathways. For the first time, we characterized the full-length cDNA sequences of Bcl2 and three Bax subtypes, determined their expression profiles and transcriptional responses to different Zn exposure pathways, which would contribute to our understanding of the molecular basis of apoptosis, and also provide new insights into physiological responses to different Zn exposure pathways.


International Journal of Molecular Sciences | 2018

MiR-205 Mediated Cu-Induced Lipid Accumulation in Yellow Catfish Pelteobagrus fulvidraco

Heng-Yang Cui; Qi-Liang Chen; Xiao-Ying Tan; Dian-Guang Zhang; Shi-Cheng Ling; Guang-Hui Chen; Zhi Luo

The present working hypothesis is that the Cu-induced changes in lipid metabolism may be mediated by miRNAs. Here, we describe the miRNA profile of the liver tissues of yellow catfish exposed to waterborne Cu, based on larger-scale sequencing of small RNA libraries. We identified a total of 172 distinct miRNAs. Among these miRNAs, compared to the control, mRNA expression levels of 16 miRNAs (miR-203a, 205, 1788-3p, 375, 31, 196a, 203b-3p, 2187-5p, 196d, 459-3p, 153a and miR-725, and two novel-miRNAs: chr4-1432, chr-7684) were down-regulated, and mRNA levels of miR-212 and chr20-5274 were up-regulated in Cu-exposed group. The functions of their target genes mainly involved ether lipid metabolism, glycerophospholipid metabolism, linoleic acid metabolism and α-linolenic acid metabolism. Cu exposure inhibited the expression of miR-205, whose predicted target genes were enriched in the pathway of lipid metabolism, including fas, lxrα, ddit3, lamp2, casp3a and baxa. These potential target genes were further verified by Dual-luciferase reporter gene assay. Using primary hepatocytes of yellow catfish, Cu incubation down-regulated miR-205 expression, and increased TG contents and FAS activity. LXR antagonist effectively ameliorate the Cu-induced change of TG content and FAS activity. These data suggest that down-regulation of the miRNA-205 may be an important step in Cu-induced changes in lipid metabolism in yellow catfish.


Genes | 2018

Functional Analysis of Promoters of Genes in Lipid Metabolism and Their Transcriptional Response to STAT3 under Leptin Signals

Kun Wu; Xiao-Ying Tan; Yi-Huan Xu; Guang-Hui Chen; Mei-Qin Zhuo

We characterized the promoters of target genes of the signal transducer and activator of transcription 3, STAT3 (carnitine palmitoyltransferase I, CPT Iα1b, acetyl-CoA carboxylase alpha, ACCα; fatty acid synthase, FAS; and peroxisome proliferator-activated receptor gamma, PPARγ) in a teleost Pelteobagrus fulvidraco. Binding sites of STAT3 were predicted on these promoters, indicating that STAT3 probably mediated their transcriptional activities. Leptin had no effect on the activity of ACCα and PPARγ promoters, but increased CPT Iα1b promoter activity and decreased FAS promoter activity. The −979/−997 STAT3 binding site of CPT Iα1b and the −794/−812 STAT3 binding site of FAS were functional binding loci responsible for leptin-induced transcriptional activation. The study provided direct evidence that STAT3 regulated the expression of CPT Iα1b and FAS at the transcription level, and determined the STAT3 response element on promoters of CPT Iα1b and FAS under leptin signal.


Food Chemistry | 2018

SREBP1, PPARG and AMPK pathways mediated the Cu-induced change in intestinal lipogenesis and lipid transport of yellow catfish Pelteobagrus fulvidraco

Guang-Hui Chen; Zhi Luo; Christer Hogstrand; Kun Wu; Shi-Cheng Ling

Cu could act as a modifier and influence lipid metabolism, but the potential mechanism was not explored. Juvenile yellow catfish were fed diet containing 0.71 (low Cu), 3.93 (intermediate Cu) and 88.81 (high Cu) mg Cu kg-1, for 8 weeks to explore the modulation of intestinal lipid metabolism following dietary Cu addition. Using specific pathway inhibitors (Fatostatin for SREBP1, T0070907 for PPARG and Compound C for AMPK), primary enterocytes of yellow catfish were used to explore the molecular mechanisms of Cu reducing intestinal lipid deposition. Dietary Cu addition triggered Cu accumulation but suppressed lipid deposition in the fore- and mid-intestine. The reduced lipid deposition was attributable to the suppressed lipogenesis and lipid absorption, and accelerated lipid transport. The PPARG, SREBP1 and AMPK signaling pathways mediated the Cu-induced changes in lipogenesis, lipid uptake and lipid transport in the intestine of yellow catfish.


Environmental Science & Technology | 2018

Zn Stimulates the Phospholipids Biosynthesis via the Pathways of Oxidative and Endoplasmic Reticulum Stress in the Intestine of Freshwater Teleost Yellow Catfish

Kun Wu; Zhi Luo; Christer Hogstrand; Guang-Hui Chen; Chuan-Chuan Wei; Dan-Dan Li

The hypothesis of our study was that waterborne Zn exposure evoked phospholipids (PL) biosynthesis to compensate for the loss of membrane integrity, and the pathways of oxidative stress and endoplasmic reticulum (ER) stress mediated the Zn-evoked changes of PL biosynthesis. Thus, we conducted RNA sequencing to analyze the differences in the intestinal transcriptomes between the control and Zn-treated P. fulvidraco. The 56-day Zn exposure increased the intestinal Zn accumulation, and mRNA levels of 816 genes were markedly up-regulated, while that of 263 genes were down-regulated. Many differentially expressed genes in the pathways of PL biosynthesis and protein processing in ER were identified. Their expression profiles indicated that waterborne Zn exposure injured protein metabolism, induced PL biosynthesis caused oxidative stress and ER stress, and activated the unfolded protein response. Then, using the primary enterocytes, we identified the mechanism of oxidative and ER stress mediating Zn-induced PL biosynthesis, and indicated that the activation of these pathways constituted adaptive mechanisms to reduce Zn toxicity. Our study demonstrated that Zn exposure via the water increased Zn accumulation and PL biosynthesis, and that oxidative stress and ER stress were interdependent and mediated the Zn-induced PL biosynthesis of the intestine in the freshwater teleost.


Aquaculture Research | 2017

Fishmeal can be totally replaced by a mixture of rapeseed meal and Chlorella meal in diets for crucian carp (Carassius auratus gibelio)

Xi Shi; Feng Chen; Guang-Hui Chen; Ya-Xiong Pan; Xiaoming Zhu; Xu Liu; Zhi Luo

Collaboration


Dive into the Guang-Hui Chen's collaboration.

Top Co-Authors

Avatar

Zhi Luo

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chuan-Chuan Wei

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dan-Dan Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ya-Xiong Pan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kun Wu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shi-Cheng Ling

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Ying Tan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yu-Feng Song

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Cheng

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge