Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuan-Chwan Wang is active.

Publication


Featured researches published by Chuan-Chwan Wang.


Cellular Signalling | 2002

Interleukin-1β-induced cyclooxygenase-2 expression is mediated through activation of p42/44 and p38 MAPKS, and NF-κB pathways in canine tracheal smooth muscle cells

Chuen-Mao Yang; Chin-Sung Chien; Li-Der Hsiao; Shu-Fen Luo; Chuan-Chwan Wang

Interleukin-beta (IL-1beta) was found to induce inflammatory responses in the airways, which exerted a potent stimulus for PG synthesis. This study was to determine the mechanisms of IL-1beta-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). IL-1beta markedly increased COX-2 expression and PGE(2) formation in a time- and concentration-dependent manner in TSMCs. Both COX-2 expression and PGE(2) formation in response to IL-1beta were attenuated by a tyrosine kinase inhibitor, genistein, a phosphatidylcholine-phospholipase C inhibitor, D609, a phosphatidylinositol-phospholipase C inhibitor, U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. IL-1beta-induced activation of NF-kappaB correlated with the degradation of IkappaB-alpha in TSMCs. IL-1beta-induced NF-kappaB activation, COX-2 expression, and PGE(2) synthesis were inhibited by the dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. IL-1beta-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 inhibitor), but these two inhibitors had no effect on IL-1beta-induced NF-kappaB activation, indicating that activation of p42/44 and p38 MAPK and NF-kappaB signalling pathways were independently required for these responses. These findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from IL-1beta-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways in canine TSMCs. IL-1beta-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.


British Journal of Pharmacology | 2000

Tumour necrosis factor‐α‐ and interleukin‐1β‐stimulated cell proliferation through activation of mitogen‐activated protein kinase in canine tracheal smooth muscle cells

Chuen-Mao Yang; Shue-Fen Luo; Chuan-Chwan Wang; Chi-Tso Chiu; Chin-Sung Chien; Chih-Chung Lin; Li-Der Hsiao

The elevated levels of inflammatory cytokines such as tumour necrosis factor‐α (TNF‐α) and interleukin‐1β (IL‐1β) have been found in the fluid of airways in symptomatic asthmatics. These cytokines have been considered as mitogens to stimulate cell proliferation in tracheal smooth muscle cells (TSMCs). We therefore investigated the effects of TNF‐α and IL‐1β on cell proliferation and activation of p42/p44 mitogen‐activated protein kinase (MAPK) in these cells. TNF‐α and IL‐1β induced [3H]‐thymidine incorporation in a time‐ and concentration‐dependent manner. The maximal stimulation of [3H]‐thymidine incorporation induced by TNF‐α and IL‐1β was seen 12 h after incubation with these cytokines. In response to TNF‐α and IL‐1β, p42/p44 MAPK was activated with a concentration‐dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin did not change DNA synthesis and phosphorylation of MAPK induced by TNF‐α and IL‐1β. These responses were attenuated by a tyrosine kinase inhibitor herbimycin, a phosphatidyl choline (PC)‐phospholipase C (PLC) inhibitor D609, a phosphatidyl inositide (PI)‐PLC inhibitor U73122, a protein kinase C inhibitor staurosporine, and removal of Ca2+ by addition of BAPTA/AM plus EGTA. TNF‐α‐ and IL‐1β‐induced [3H]‐thymidine incorporation and phosphorylation of p42/p44 MAPK was completely inhibited by PD98059 (an inhibitor of MEK1/2), indicating that activation of MEK1/2 was required for these responses. These results suggest that the mitogenic effects of TNF‐α and IL‐1β were mediated through the activation of MEK1/2 and p42/p44 MAPK pathway. TNF‐α‐ and IL‐1β‐mediated responses were modulated by PLC, Ca2+, PKC, and tyrosine kinase associated with cell proliferation in TSMCs.


Biochemical Journal | 2001

Interleukin-1beta enhances bradykinin-induced phosphoinositide hydrolysis and Ca2+ mobilization in canine tracheal smooth-muscle cells: involvement of the Ras/Raf/mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK pathway.

Chuen-Mao Yang; Chin-Sung Chien; Chuan-Chwan Wang; Yan-Mei Hsu; Chi-Tso Chiu; Chih-Chung Lin; Shue-Fen Luo; Li-Der Hsiao

Elevated levels of several cytokines including interleukin-1beta (IL-1beta) have been detected in airway fluid of asthmatic patients. Inhalation of IL-1beta induced a bronchial hyper-reactivity to contractile agonists. However, the implication of IL-1beta in the pathogenesis of bronchial hyper-reactivity is not completely understood. Therefore, we investigated the effect of IL-1beta on bradykinin (BK)-induced inositol phosphate [Ins(X)P] accumulation and Ca2+ mobilization, and up-regulation of BK receptor density in canine cultured tracheal smooth-muscle cells (TSMCs). Treatment of TSMCs with IL-1beta potentiated BK-induced Ins(X)P accumulation and Ca2+ mobilization. However, there was no effect on the Ins(X)P response induced by endothelin-1, 5-hydroxytryptamine or carbachol. Treatment with platelet-derived growth factor B-chain homodimer (PDGF-BB) also enhanced the BK-induced Ins(X)P response. These enhancements by IL-1beta and PDGF-BB might be due to an up-regulation of BK B(2) receptor density (B(max)), since [(3)H]BK binding to TSMCs was inhibited by the B(2)-selective agonist and antagonist, BK and Hoe 140, but not by B(1)-selective reagents. The enhancing effects of IL-1beta and PDGF-BB on Ins(X)P accumulation, Ca2+ mobilization and B(max) were attenuated by PD98059 [an inhibitor of activation of mitogen-activated protein kinase (MAPK) kinase, MEK] and cycloheximide (an inhibitor of protein synthesis), suggesting that IL-1beta may share a common signalling pathway with PDGF-BB via protein synthesis. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed the up-regulation of BK receptors induced by IL-1beta, indicating that Ras and Raf may be required for activation of these kinases. These results suggest that the augmentation of BK-induced responses produced by IL-1beta might be, at least in part, mediated through activation of the Ras/Raf/MEK/MAPK pathway in TSMCs.


Cellular Signalling | 2003

Induction of cyclooxygenase-2 by lipopolysaccharide in canine tracheal smooth muscle cells: involvement of p42/p44 and p38 mitogen-activated protein kinases and nuclear factor-κB pathways

Shue-Fen Luo; Chuan-Chwan Wang; Chin-Sung Chien; Li-Der Hsiao; Chuen-Mao Yang

Lipopolysaccharide (LPS) was found to induce inflammatory responses in the airways and exerted as a potent stimulus for PG synthesis. This study was to determine the mechanisms of LPS-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). LPS markedly increased the expression of COX-2 and release of PGE(2) in a time- and concentration-dependent manner, whereas COX-1 remained unaltered. Both the expression of COX-2 and the generation of PGE(2) in response to LPS were attenuated by a tyrosine kinase inhibitor genistein, a phosphatidylcholine-phospholipase C inhibitor D609, a phosphatidylinositol-phospholipase C inhibitor U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. Furthermore, LPS-induced NF-kappaB activation correlated with the degradation of IkappaB-alpha, COX-2 expression, and PGE(2) synthesis, was inhibited by transfection with dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. LPS-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK inhibitor), but these two inhibitors had no effect on LPS-induced NF-kappaB activation, indicating that NF-kappaB is activated by LPS independently of activation of p42/p44 MAPK and p38 MAPK pathways in TSMCs. Taken together, these findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from LPS-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways. LPS-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.


Cellular Signalling | 2001

Mechanisms of thrombin-induced MAPK activation associated with cell proliferation in human cultured tracheal smooth muscle cells

Chih-Chung Lin; Ming-Hwang Shyr; Chin-Sung Chien; Chuan-Chwan Wang; Chi-Tso Chiu; Li-Der Hsiao; Chuen-Mao Yang

The elevated level of thrombin has been detected in the airway fluids of asthmatic patients. However, the implication of thrombin in the pathogenesis of bronchial hyperreactivity was not completely understood. Therefore, in this study we investigated the effect of thrombin on cell proliferation and p42/p44 mitogen-activated protein kinase (MAPK) activation in human tracheal smooth muscle cells (TSMCs). Thrombin stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitor GF109203X, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and PI 3-kinase inhibitors wortmannin and LY294002. In addition, thrombin-induced [3H]-thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2), indicating that activation of MEK1/2 was required for these responses. Furthermore, overexpression of dominant negative mutants, RasN17 and Raf-301, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca(2+), PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in cultured human TSMCs.


Cellular Signalling | 2002

Substance P-induced activation of p42/44 mitogen-activated protein kinase associated with cell proliferation in human tracheal smooth muscle cells.

Chuen-Mao Yang; Li-Der Hsiao; Chin-Sung Chien; Chih-Chung Lin; Shu-Fen Luo; Chuan-Chwan Wang

Substance P (SP) released from sensory nerve endings in the airways induces several responses including cell proliferation. However, the mechanisms were not completely understood in tracheal smooth muscle cells (TSMCs). We therefore investigated the effect of SP on cell proliferation and activation of p42/p44 mitogen-activated protein kinase (MAPK) in these cells. SP stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in TSMCs. Both DNA synthesis and phosphorylation of MAPK in response to SP were attenuated by pretreatment with pertussis toxin, genistein, D609, U73122, staurosporine, removal of Ca(2+) by BAPTA/AM plus EGTA, PD98059, and SB202190. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by SP and PDGF-BB. These results conclude that the mitogenic effect of SP was mediated through the activation of Ras/Raf/MEK/MAPK pathway, which was modulated by PC-PLC, PI-PLC, Ca(2+), and PKC in cultured human TSMCs.


Anesthesiology | 1999

Mechanisms underlying the inhibitory effect of propofol on the contraction of canine airway smooth muscle.

Chih-Chung Lin; Ming-Hwang Shyr; Peter P.C. Tan; Chin-Sung Chien; Shiow-Lin Pan; Chuan-Chwan Wang; Chi-Tso Chiu; Chuen-Mao Yang

BACKGROUND Propofol has been shown to produce relaxation of preconstricted airway smooth muscle. Although the inhibition of calcium mobilization is supposed to be the major mechanism of action, the whole picture of the mechanisms is not completely clear. METHODS Contractile response was performed using canine tracheal rings. The effects of propofol on carbachol-induced mobilization of intracellular Ca2+ and phosphoinositide hydrolysis were measured using cultured canine tracheal smooth muscle cells by monitoring fura-2 signal and assessing the accumulation of [3H]-inositol phosphates. To detect the effect of propofol on muscarinic receptor density and affinity, [3H]N-methyl-scopolamine was used as a radioligand for receptor binding assay. RESULTS Pretreatment with propofol shifts the concentration-response curves of carbachol-induced smooth muscle contraction to the right in a concentration-dependent manner without changing the maximal response. Propofol not only decreased the release of Ca2+ from internal stores but also inhibited the calcium influx induced by carbachol. In addition, carbachol-induced inositol phosphate accumulation was attenuated by propofol; the inhibitory pattern was similar to the contractile response. Moreover, propofol did not alter the density of muscarinic receptors. The dissociation constant value was not altered by pretreatment with 100 microM propofol but was significantly increased by 300 microM (propofol, 952+/-229 pM; control, 588+/-98 pM; P<0.05). CONCLUSIONS Propofol attenuates the muscarinic receptor-mediated airway muscle contraction. The mechanism underlying these effects was attenuation of inositol phosphate generation and inhibition of Ca2+ mobilization through the inhibition of the receptor-coupled signal-transduction pathway.


Cellular Signalling | 2002

Thrombin-stimulated cell proliferation mediated through activation of Ras/Raf/MEK/MAPK pathway in canine cultured tracheal smooth muscle cells.

Chih-Chung Lin; Ming-Hwang Shyr; Chin-Sung Chien; Chuan-Chwan Wang; Chi-Tso Chiu; Li-Der Hsiao; Chuen-Mao Yang

The elevated level of thrombin has been detected in the airway fluids of asthmatic patients and shown to stimulate cell proliferation in tracheal smooth muscle cells (TSMCs). However, the implication of thrombin in the cell proliferation was not completely understood. In this study, thrombin stimulated [3H]thymidine incorporation and p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C inhibitor GF109203X, removal of Ca2+ by addition of BAPTA/AM plus EGTA, PI 3-kinase inhibitors wortmannin and LY294002, and inhibitor of MEK1/2 PD98059. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca2+, PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in canine cultured TSMCs.


Cellular Signalling | 2001

Tumour necrosis factor-α enhances bradykinin-induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells

Yan-Mei Hsu; Chi-Tso Chiu; Chuan-Chwan Wang; Chin-Sung Chien; Shue-Fen Luo; Li-Der Hsiao; Kao-Yi Liang; Chuen-Mao Yang

Abstract Inhalation of tumour necrosis factor-α (TNF-α) induced a bronchial hyperreactivity to contractile agonists. However, the mechanisms of TNF-α involved in the pathogenesis of bronchial hyperreactivity were not completely understood. Therefore, we investigated the effect of TNF-α on bradykinin (BK)-induced inositol phosphate (IP) accumulation and Ca2+ mobilization, and up-regulation of BK receptor density in canine cultured tracheal smooth muscle cells (TSMCs). Pretreatment of TSMCs with TNF-α potentiated BK-induced IP accumulation and Ca2+ mobilization. However, there was no effect on the IP response induced by endothelin-1 (ET-1), 5-hydroxytryptamine (5-HT), and carbachol. Pretreatment with PDGF B-chain homodimer (PDGF-BB) also enhanced BK-induced IP response. These enhancements induced by TNF-α and PDGF-BB might be due to an increase in BK B2 receptor density (Bmax), since [3H]BK binding to TSMCs was inhibited by the B2 selective agonist and antagonist, BK and Hoe 140, but not by the B1 selective reagents. The enhancing effects of TNF-α and PDGF-BB were attenuated by PD98059 (an inhibitor of activation of MAPK kinase, MEK) and cycloheximide (an inhibitor of protein synthesis), suggesting that TNF-α may share a common signalling pathway with PDGF-BB via protein(s) synthesis in TSMCs. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 mitogen-activated protein kinase (MAPK) activation induced by TNF-α and PDGF-BB and attenuated the effect of TNF-α on BK-induced IP response, indicating that Ras and Raf may be required for activation of these kinases. These results suggest that the augmentation of BK-induced responses produced by TNF-α might be, at least in part, mediated through activation of Ras/Raf/MEK/MAPK pathway in TSMCs.


Cellular Signalling | 2001

Mechanisms of bradykinin-mediated Ca2+ signalling in canine cultured corneal epithelial cells

Samuel C M Huang; Chin-Sung Chien; Li-Der Hsiao; Chuan-Chwan Wang; Chi-Tso Chiu; Kao-Yi Liang; Chuen-Mao Yang

Experiments were designed to differentiate the mechanisms of bradykinin receptors mediating the changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in canine cultured corneal epithelial cells (CECs). Bradykinin and Lys-bradykinin caused an initial transient peak of [Ca(2+)](i) in a concentration-dependent manner, with half-maximal stimulation (pEC(50)) obtained at 6.9 and 7.1, respectively. Pretreatment of CECs with pertussis toxin (PTX) or cholera toxin (CTX) for 24 h did not affect the bradykinin-induced [Ca(2+)](i) changes. Application of Ca(2+) channel blockers, diltiazem and Ni(2+), inhibited the bradykinin-induced Ca(2+) mobilization, indicating that Ca(2+) influx was required for the bradykinin-induced responses. Addition of thapsigargin (TG), which is known to deplete intracellular Ca(2+) stores, transiently increased [Ca(2+)](i) in Ca(2+)-free buffer, and subsequently induced Ca(2+) influx when Ca(2+) was readded to this buffer. Pretreatment of CECs with TG completely abolished bradykinin-induced initial transient [Ca(2+)](i), but had slight effect on bradykinin-induced Ca(2+) influx. Pretreatment of CECs with 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF96365) and 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) inhibited the bradykinin-induced Ca(2+) release and Ca(2+) influx, consistent with the inhibition of receptor-gated Ca(2+) channels and phospholipase C (PLC) in CECs, respectively. These results demonstrate that bradykinin directly stimulates B(2) receptors and subsequently Ca(2+) mobilization via a PTX-insensitive G protein in canine CECs. These results suggest that bradykinin-induced Ca(2+) influx into the cells is not due to depletion of these Ca(2+) stores, as prior depletion of these pools by TG has no effect on the bradykinin-induced Ca(2+) influx that is dependent on extracellular Ca(2+) in CECs.

Collaboration


Dive into the Chuan-Chwan Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge