Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuan Huang is active.

Publication


Featured researches published by Chuan Huang.


Magnetic Resonance in Medicine | 2012

T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing

Chuan Huang; Christian G. Graff; Eric Clarkson; Ali Bilgin; Maria I. Altbach

Recently, there has been an increased interest in quantitative MR parameters to improve diagnosis and treatment. Parameter mapping requires multiple images acquired with different timings usually resulting in long acquisition times. While acquisition time can be reduced by acquiring undersampled data, obtaining accurate estimates of parameters from undersampled data is a challenging problem, in particular for structures with high spatial frequency content. In this work, principal component analysis is combined with a model‐based algorithm to reconstruct maps of selected principal component coefficients from highly undersampled radial MRI data. This novel approach linearizes the cost function of the optimization problem yielding a more accurate and reliable estimation of MR parameter maps. The proposed algorithm—reconstruction of principal component coefficient maps using compressed sensing—is demonstrated in phantoms and in vivo and compared with two other algorithms previously developed for undersampled data. Magn Reson Med, 2012.


Magnetic Resonance in Medicine | 2013

T2 relaxometry with indirect echo compensation from highly undersampled data

Chuan Huang; Ali Bilgin; Tomoe Barr; Maria I. Altbach

To develop an algorithm for fast and accurate T2 estimation from highly undersampled multi‐echo spin‐echo data.


Medical Physics | 2015

Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

Chuan Huang; Yoann Petibon; Jinsong Ouyang; Timothy G. Reese; Mark A. Ahlman; David A. Bluemke; Georges El Fakhri

PURPOSE Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. METHODS Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. RESULTS Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. CONCLUSIONS Accelerated tMR images obtained with more than 4 times acceleration can still provide relatively accurate motion fields and yield tMR-based motion corrected PET images with similar image quality as those reconstructed using fully sampled tMR data. The reduction of tMR acquisition time makes it more compatible with routine clinical cardiac PET-MR studies.


Medical Physics | 2014

Relative role of motion and PSF compensation in whole‐body oncologic PET‐MR imaging

Yoann Petibon; Chuan Huang; Jinsong Ouyang; Timothy G. Reese; Quanzheng Li; Aleksandra Syrkina; Yen-Lin Chen; Georges El Fakhri

PURPOSE Respiratory motion and partial-volume effects are the two main sources of image degradation in whole-body PET imaging. Simultaneous PET-MR allows measurement of respiratory motion using MRI while collecting PET events. Improved PET images may be obtained by modeling respiratory motion and point spread function (PSF) within the PET iterative reconstruction process. In this study, the authors assessed the relative impact of PSF modeling and MR-based respiratory motion correction in phantoms and patient studies using a whole-body PET-MR scanner. METHODS An asymmetric exponential PSF model accounting for radially varying and axial detector blurring effects was obtained from point source acquisitions performed in the PET-MR scanner. A dedicated MRI acquisition protocol using single-slice steady state free-precession MR acquisitions interleaved with pencil-beam navigator echoes was developed to track respiratory motion during PET-MR studies. An iterative ordinary Poisson fully 3D OSEM PET reconstruction algorithm modeling all the physical effects of the acquisition (attenuation, scatters, random events, detectors efficiencies, PSF), as well as MR-based nonrigid respiratory deformations of tissues (in both emission and attenuation maps) was developed. Phantom and(18)F-FDG PET-MR patient studies were performed to evaluate the proposed quantitative PET-MR methods. RESULTS The phantom experiment results showed that PSF modeling significantly improved contrast recovery while limiting noise propagation in the reconstruction process. In patients with soft-tissue static lesions, PSF modeling improved lesion contrast by 19.7%-109%, enhancing the detectability and assessment of small tumor foci. In a patient study with small moving hepatic lesions, the proposed reconstruction technique improved lesion contrast by 54.4%-98.1% and reduced apparent lesion size by 21.8%-34.2%. Improvements were particularly important for the smallest lesion undergoing large motion at the lung-liver interface. Heterogeneous tumor structures delineation was substantially improved. Enhancements offered by PSF modeling were more important when correcting for motion at the same time. CONCLUSIONS The results suggest that the proposed quantitative PET-MR methods can significantly enhance the performance of tumor diagnosis and staging as compared to conventional methods. This approach may enable utilization of the full potential of the scanner in oncologic studies of both the lower abdomen, with moving lesions, as well as other parts of the body unaffected by motion.


NeuroImage | 2014

Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET–MR: Phantom and non-human primate studies

Chuan Huang; Jerome L. Ackerman; Yoann Petibon; Marc D. Normandin; Thomas J. Brady; Georges El Fakhri; Jinsong Ouyang

Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkeys head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values.


Medical Physics | 2014

MR‐based motion correction for PET imaging using wired active MR microcoils in simultaneous PET‐MR: Phantom study

Chuan Huang; Jerome L. Ackerman; Yoann Petibon; Thomas J. Brady; Georges El Fakhri; Jinsong Ouyang

PURPOSE Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. METHODS Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic(18)F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. RESULTS Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from -0.6% to 3.4% as compared to a bias ranging from -25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%-156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R(2) = 0.978 ± 0.007 (0.588 ± 0.010, respectively). CONCLUSIONS Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.


international symposium on biomedical imaging | 2013

Respiratory motion compensation in simultaneous PET/MR using a maximum a posteriori approach

Joyita Dutta; Georges El Fakhri; Chuan Huang; Yoann Petibon; Timothy G. Reese; Quanzheng Li

The quantitative reliability of pulmonary PET scans is compromised by respiratory motion. The emergence of simultaneous, whole-body PET/MR imaging enables us to correct for motion artifacts in PET using motion information derived from anatomical MR images. We present here a framework for respiratory motion-compensated PET image reconstruction using simultaneous PET/MR. We have developed a radial FLASH pulse sequence for generating gated volumetric MR images at a reasonable speed without significantly sacrificing image quality. A navigator encapsulated within the pulse sequence enables us to retrospectively compute time bins corresponding to each gate. The deformation fields for each gate with respect to a reference gate are computed from the gated MR images by means of non-rigid registration. The gated MR images are also used to generate individual attenuation maps for each gate. Finally motion-compensated PET reconstruction is performed using a maximum a posteriori (MAP) approach. The complete framework was applied to a clinical study conducted on the Biograph mMR scanner (Siemens Medical Solutions), which allows simultaneous acquisition of whole-body PET/MR data. This study demonstrates the utility of our framework in generating meaningful estimates of deformation fields and correcting for motion artifacts in PET.


Magnetic Resonance Imaging | 2014

Pattern recognition for rapid T2 mapping with stimulated echo compensation

Chuan Huang; Maria I. Altbach; Georges El Fakhri

Indirect echoes (such as stimulated echoes) are a source of signal contamination in multi-echo spin-echo T2 quantification and can lead to T2 overestimation if a conventional exponential T2 decay model is assumed. Recently, nonlinear least square fitting of a slice-resolved extended phase graph (SEPG) signal model has been shown to provide accurate T2 estimates with indirect echo compensation. However, the iterative nonlinear least square fitting is computationally expensive and the T2 map generation time is long. In this work, we present a pattern recognition T2 mapping technique based on the SEPG model that can be performed with a single pre-computed dictionary for any arbitrary echo spacing. Almost identical T2 and B1 maps were obtained from in vivo data using the proposed technique compared to conventional iterative nonlinear least square fitting, while the computation time was reduced by more than 14-fold.


Magnetic Resonance Imaging | 2016

Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging

Xiaomeng Zhang; Yen-Lin Chen; Ruth P. Lim; Chuan Huang; Ivan Chebib; Georges El Fakhri

The primary objective of this study was to develop and validate simultaneous PET/MRI-MRS as a novel biological image-guided approach to neoadjuvant radiotherapy (RT) and/or chemoradiation (chemoRT) in soft tissue sarcomas (STS). A patient with sarcoma of the right thigh underwent PET/MRI scan before and after neoadjuvant (preoperative) radiotherapy. The magnetic resonance imaging (MRI) and 2-deoxy-2-[fluorine-18]-fluoro-D-glucose-Positron Emission Tomography ((18)F-FDG-PET) scans were performed simultaneously. In the post-radiation scan, magnetic resonance spectroscopy (MRS) was subsequently acquired with volume of interest positioned in a residual hyper-metabolic region detected by PET. Post-radiation PET/MRI showed a residual T2-hyperintense mass with significantly reduced (18)F-FDG-uptake, compatible with near complete response to radiotherapy. However, a small region of residual high (18)F-FDG uptake was detected at the tumor margin. MRS of this region had similar metabolite profile as normal tissue, and was thus considered false positive on PET scan. Pathology results were obtained after surgery for confirmation of imaging findings.


Physics in Medicine and Biology | 2015

Continuous MR bone density measurement using water- and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR.

Chuan Huang; Jinsong Ouyang; Timothy G. Reese; Yaotang Wu; G. El Fakhri; Jerome L. Ackerman

Due to the lack of signal from solid bone in normal MR sequences for the purpose of MR-based attenuation correction, investigators have proposed using the ultrashort echo time (UTE) pulse sequence, which yields signal from bone. However, the UTE-based segmentation approach might not fully capture the intra- and inter-subject bone density variation, which will inevitably lead to bias in reconstructed PET images. In this work, we investigated using the water- and fat-suppressed proton projection imaging (WASPI) sequence to obtain accurate and continuous attenuation for bones. This approach is capable of accounting for intra- and inter-subject bone attenuation variations. Using data acquired from a phantom, we have found that that attenuation correction based on the WASPI sequence is more accurate and precise when compared to either conventional MR attenuation correction or UTE-based segmentation approaches.

Collaboration


Dive into the Chuan Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian G. Graff

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge