Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georges El Fakhri is active.

Publication


Featured researches published by Georges El Fakhri.


The Journal of Nuclear Medicine | 2007

Clinical Myocardial Perfusion PET/CT

Marcelo F. Di Carli; Sharmila Dorbala; Jolene Meserve; Georges El Fakhri; Arkadiusz Sitek; Stephen C. Moore

The field of nuclear cardiology is witnessing growing interest in the use of cardiac PET for the evaluation of patients with coronary artery disease (CAD). The available evidence suggests that myocardial perfusion PET provides an accurate means for diagnosing obstructive CAD, which appears superior to SPECT especially in the obese and in those undergoing pharmacologic stress. The ability to record changes in left ventricular function from rest to peak stress and to quantify myocardial perfusion (in mL/min/g of tissue) provides an added advantage over SPECT for evaluating multivessel CAD. There is growing and consistent evidence that gated myocardial perfusion PET also provides clinically useful risk stratification. Although the introduction of hybrid PET/CT technology offers the exciting possibility of assessing the extent of anatomic CAD (CT coronary angiography) and its functional consequences (ischemic burden) in the same setting, there are technical challenges in the implementation of CT-based transmission imaging for attenuation correction. Nonetheless, this integrated platform for assessing anatomy and biology offers a great potential for translating advances in molecularly targeted imaging into humans.


The Journal of Nuclear Medicine | 2009

Reproducibility and Accuracy of Quantitative Myocardial Blood Flow Assessment with 82Rb PET: Comparison with 13N-Ammonia PET

Georges El Fakhri; Arash Kardan; Arkadiusz Sitek; Sharmila Dorbala; Nathalie Abi-Hatem; Youmna Lahoud; Alan J. Fischman; Martha Coughlan; Tsunehiro Yasuda; Marcelo F. Di Carli

82Rb cardiac PET allows the assessment of myocardial perfusion with a column generator in clinics that lack a cyclotron. There is evidence that the quantitation of myocardial blood flow (MBF) and coronary flow reserve (CFR) with dynamic 82Rb PET is feasible. The objectives of this study were to determine the accuracy and reproducibility of MBF estimates from dynamic 82Rb PET by using our methodology for generalized factor analysis (generalized factor analysis of dynamic sequences [GFADS]) and compartment analysis. Methods: Reproducibility was evaluated in 22 subjects undergoing dynamic rest and dipyridamole stress 82Rb PET studies at a 2-wk interval. The inter- and intraobserver variability of MBF quantitation with dynamic 82Rb PET was assessed with 4 repeated estimations by each of 4 observers. Accuracy was evaluated in 20 subjects undergoing dynamic rest and dipyridamole stress PET studies with 82Rb and 13N-ammonia, respectively. The left ventricular and right ventricular blood pool and left ventricular tissue time–activity curves were estimated by GFADS. MBF was estimated by fitting the blood pool and tissue time–activity curves to a 2-compartment kinetic model for 82Rb and to a 3-compartment model for 13N-ammonia. CFR was estimated as the ratio of peak MBF to baseline MBF. Results: The reproducibility of the MBF estimates in repeated 82Rb studies was very good at rest and during peak stress (R2= 0.935), as was the reproducibility of the CFR estimates (R2 = 0.841). The slope of the correlation line was very close to one for the estimation of MBF (0.986) and CFR (0.960) in repeated 82Rb studies. The intraobserver reliability was less than 3% for the estimation of MBF at rest and during peak stress as well as for the estimation of CFR. The interobserver reliabilities were 0.950 at rest and 0.975 at peak stress. The correlation between myocardial flow estimates obtained at rest and those obtained during peak stress in 82Rb and 13N-ammonia studies was very good (R2 = 0.857). Bland–Altman plots comparing CFR estimated with 82Rb and CFR estimated with 13N-ammonia revealed an underestimation of CFR with 82Rb compared with 13N-ammonia; the underestimation was within ±1.96 SD. Conclusion: MBF quantitation with GFADS and dynamic 82Rb PET demonstrated excellent reproducibility as well as intra- and interobserver reliability. The accuracy of the absolute quantitation of MBF with factor and compartment analyses and dynamic 82Rb PET was very good, compared with that achieved with 13N-ammonia, for MBF of up to 2.5 mL/g/min.


The Journal of Nuclear Medicine | 2012

MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

Se Young Chun; Timothy G. Reese; Jinsong Ouyang; Bastien Guerin; Ciprian Catana; Xuping Zhu; Nathaniel M. Alpert; Georges El Fakhri

Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods: Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results: Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion: Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection compared with respiratory gating and no motion correction while reducing radiation dose. In vivo primate and rabbit studies confirmed the improvement in PET image quality and provide the rationale for evaluation in simultaneous whole-body PET/MRI clinical studies.


The Journal of Nuclear Medicine | 2011

MRI-Assisted PET Motion Correction for Neurologic Studies in an Integrated MR-PET Scanner

Ciprian Catana; Thomas Benner; Andre van der Kouwe; Larry G. Byars; Michael Hamm; Daniel B. Chonde; Christian Michel; Georges El Fakhri; Matthias J. Schmand; A. Gregory Sorensen

Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. Methods: To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. Results: After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. Conclusion: An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.


The Journal of Nuclear Medicine | 2011

Improvement in Lesion Detection with Whole-Body Oncologic Time-of-Flight PET

Georges El Fakhri; Suleman Surti; Cathryn M. Trott; Joshua Scheuermann; Joel S. Karp

Time-of-flight (TOF) PET has great potential in whole-body oncologic applications, and recent work has demonstrated qualitatively in patient studies the improvement that can be achieved in lesion visibility. The aim of this work was to objectively quantify the improvement in lesion detectability that can be achieved in lung and liver lesions with whole-body 18F-FDG TOF PET in a cohort of 100 patients as a function of body mass index, lesion location and contrast, and scanning time. Methods: One hundred patients with BMIs ranging from 16 to 45 were included in this study. Artificial 1-cm spheric lesions were imaged separately in air at variable locations of each patients lung and liver, appropriately attenuated, and incorporated in the patient list-mode data with 4 different lesion-to-background contrast ranges. The fused studies with artificial lesion present or absent were reconstructed using a list-mode unrelaxed ordered-subsets expectation maximization with chronologically ordered subsets and a gaussian TOF kernel for TOF reconstruction. Conditions were compared on the basis of performance of a 3-channel Hotelling observer signal-to-noise ratio in detecting the presence of a sphere of unknown size on an anatomic background while modeling observer noise. Results: TOF PET yielded an improvement in lesion detection performance (3-channel Hotelling observer signal-to-noise ratio) over non-TOF PET of 8.3% in the liver and 15.1% in the lungs. The improvement in all lesions was 20.3%, 12.0%, 9.2%, and 7.5% for mean contrast values of 2.0:1, 3.2:1, 4.4:1, and 5.7:1, respectively. Furthermore, this improvement was 9.8% in patients with a BMI of less than 30 and 11.1% in patients with a BMI of 30 or more. Performance plateaued faster as a function of number of iterations with TOF than non-TOF. Conclusion: Over all contrasts and body mass indexes, oncologic TOF PET yielded a significant improvement in lesion detection that was greater for lower lesion contrasts. This improvement was achieved without compromising other aspects of PET imaging.


The Journal of Nuclear Medicine | 2009

Reproducibility and Accuracy of Quantitative Myocardial Blood Flow Assessment with 82 Rb PET: Comparison with 13 N-Ammonia PET

Georges El Fakhri; Arash Kardan; Arkadiusz Sitek; Sharmila Dorbala; Nathalie Abi-Hatem; Youmna Lahoud; Alan J. Fischman; Martha Coughlan; Tsunehiro Yasuda; Marcelo F. Di Carli

82Rb cardiac PET allows the assessment of myocardial perfusion with a column generator in clinics that lack a cyclotron. There is evidence that the quantitation of myocardial blood flow (MBF) and coronary flow reserve (CFR) with dynamic 82Rb PET is feasible. The objectives of this study were to determine the accuracy and reproducibility of MBF estimates from dynamic 82Rb PET by using our methodology for generalized factor analysis (generalized factor analysis of dynamic sequences [GFADS]) and compartment analysis. Methods: Reproducibility was evaluated in 22 subjects undergoing dynamic rest and dipyridamole stress 82Rb PET studies at a 2-wk interval. The inter- and intraobserver variability of MBF quantitation with dynamic 82Rb PET was assessed with 4 repeated estimations by each of 4 observers. Accuracy was evaluated in 20 subjects undergoing dynamic rest and dipyridamole stress PET studies with 82Rb and 13N-ammonia, respectively. The left ventricular and right ventricular blood pool and left ventricular tissue time–activity curves were estimated by GFADS. MBF was estimated by fitting the blood pool and tissue time–activity curves to a 2-compartment kinetic model for 82Rb and to a 3-compartment model for 13N-ammonia. CFR was estimated as the ratio of peak MBF to baseline MBF. Results: The reproducibility of the MBF estimates in repeated 82Rb studies was very good at rest and during peak stress (R2= 0.935), as was the reproducibility of the CFR estimates (R2 = 0.841). The slope of the correlation line was very close to one for the estimation of MBF (0.986) and CFR (0.960) in repeated 82Rb studies. The intraobserver reliability was less than 3% for the estimation of MBF at rest and during peak stress as well as for the estimation of CFR. The interobserver reliabilities were 0.950 at rest and 0.975 at peak stress. The correlation between myocardial flow estimates obtained at rest and those obtained during peak stress in 82Rb and 13N-ammonia studies was very good (R2 = 0.857). Bland–Altman plots comparing CFR estimated with 82Rb and CFR estimated with 13N-ammonia revealed an underestimation of CFR with 82Rb compared with 13N-ammonia; the underestimation was within ±1.96 SD. Conclusion: MBF quantitation with GFADS and dynamic 82Rb PET demonstrated excellent reproducibility as well as intra- and interobserver reliability. The accuracy of the absolute quantitation of MBF with factor and compartment analyses and dynamic 82Rb PET was very good, compared with that achieved with 13N-ammonia, for MBF of up to 2.5 mL/g/min.


The Journal of Nuclear Medicine | 2011

Impact of Time-of-Flight PET on Whole-Body Oncologic Studies: A Human Observer Lesion Detection and Localization Study

Suleman Surti; Joshua Scheuermann; Georges El Fakhri; Margaret E. Daube-Witherspoon; Ruth P. Lim; Nathalie Abi-Hatem; Elie Moussallem; Francois Benard; David A. Mankoff; Joel S. Karp

Phantom studies have shown improved lesion detection performance with time-of-flight (TOF) PET. In this study, we evaluate the benefit of fully 3-dimensional, TOF PET in clinical whole-body oncology using human observers to localize and detect lesions in realistic patient anatomic backgrounds. Our hypothesis is that with TOF imaging we achieve improved lesion detection and localization for clinically challenging tasks, with a bigger impact in large patients. Methods: One hundred patient studies with normal 18F-FDG uptake were chosen. Spheres (diameter, 10 mm) were imaged in air at variable locations in the scanner field of view corresponding to lung and liver locations within each patient. Sphere data were corrected for attenuation and merged with patient data to produce fused list-mode data files with lesions added to normal-uptake scans. All list files were reconstructed with full corrections and with or without the TOF kernel using a list-mode iterative algorithm. The images were presented to readers to localize and report the presence or absence of a lesion and their confidence level. The interpretation results were then analyzed to calculate the probability of correct localization and detection, and the area under the localized receiver operating characteristic (LROC) curve. The results were analyzed as a function of scan time per bed position, patient body mass index (BMI < 26 and BMI ≥ 26), and type of imaging (TOF and non-TOF). Results: Our results showed that longer scan times led to an improved area under the LROC curve for all patient sizes. With TOF imaging, there was a bigger increase in the area under the LROC curve for larger patients (BMI ≥ 26). Finally, we saw smaller differences in the area under the LROC curve for large and small patients when longer scan times were combined with TOF imaging. Conclusion: A combination of longer scan time (3 min in this study) and TOF imaging provides the best performance for imaging large patients or a low-uptake lesion in small or large patients. This imaging protocol also provides similar performance for all patient sizes for lesions in the same organ type with similar relative uptake, indicating an ability to provide a uniform clinical diagnosis in most oncologic lesion detection tasks.


The Journal of Nuclear Medicine | 2007

Validation of a Standardized Normalization Template for Statistical Parametric Mapping Analysis of 123I-FP-CIT Images

Aurélie Kas; Pierre Payoux; Marie-Odile Habert; Zoulikha Malek; Y. Cointepas; Georges El Fakhri; Philippe Chaumet-Riffaud; Emmanuel Itti; Philippe Remy

123I-FP-CIT (123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane) is a SPECT dopamine transporter (DAT) tracer that probes dopaminergic cell loss in Parkinsons disease (PD). Quantification of 123I-FP-CIT images is performed at equilibrium using a ratio (BR) of specific (striatal) to nonspecific (occipital) uptake with values obtained from regions of interest drawn manually over these structures. Statistical parametric mapping (SPM) is a fully automated voxel-based statistical approach that has great potential in the context of DAT imaging. However, the accuracy of the spatial normalization provided by SPM has not been validated for 123I-FP-CIT images. Our first aim was to create an 123I-FP-CIT template that does not require the acquisition of patient-specific MRI and to validate the spatial normalization procedure. Next, we hypothesized that this customized template could be used by different SPECT centers without affecting the outcomes of imaging analyses. Methods: The spatial normalization to the customized template created with SPM (template A1) was validated using 123I-FP-CIT images obtained from 6 subjects with essential tremor (ET) with normal DAT status and 6 PD patients. Variability in BR values due to the normalization was evaluated using striatal volume of interest (VOI). To determine whether different SPECT centers could use a unique 123I-FP-CIT template, we generated 3 other 123I-FP-CIT templates using different subjects and image-processing schemes. The interchangeability of these templates was assessed using (a) putamen BR values analyzed with the intraclass correlation coefficient (ICC) and the Bland–Altman graphical analysis, and (b) SPM analysis comparing the results of group comparisons—that is, ET versus PD, obtained after normalization to each of the 4 templates. Results: There was no significant difference between pre- and postnormalization striatal BR values in our study. The mean variability calculated with putamen VOI values after normalization to each template was <10%, with the lowest ICC of 98%. Intergroup analyses performed with VOI and SPM approaches provided similar results independently of the template used. Conclusion: SPM normalization was accurate even in subjects with low striatal 123I-FP-CIT uptake, making it a promising approach for automatic analysis of 123I-FP-CIT images using a single customized template at different centers.


Physics in Medicine and Biology | 2011

Monitoring proton radiation therapy with in-room PET imaging

Xuping Zhu; S. España; Juliane Daartz; Norbert J. Liebsch; Jinsong Ouyang; Harald Paganetti; Thomas Bortfeld; Georges El Fakhri

We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to <5 min. Features in deep-site, soft-tissue regions were better retained with in-room short PET acquisitions because of the collection of (15)O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.


Physics in Medicine and Biology | 2013

Clinical Impact of Time-of-Flight and Point Response Modeling in PET Reconstructions: A Lesion Detection Study

Joshua Schaefferkoetter; Michael E. Casey; David W. Townsend; Georges El Fakhri

Time-of-flight (TOF) and point spread function (PSF) modeling have been shown to improve PET reconstructions, but the impact on physicians in the clinical setting has not been thoroughly investigated. A lesion detection and localization study was performed using simulated lesions in real patient images. Four reconstruction schemes were considered: ordinary Poisson OSEM (OP) alone and combined with TOF, PSF, and TOF + PSF. The images were presented to physicians experienced in reading PET images, and the performance of each was quantified using localization receiver operating characteristic. Numerical observers (non-prewhitening and Hotelling) were used to identify optimal reconstruction parameters, and observer SNR was compared to the performance of the physicians. The numerical models showed good agreement with human performance, and best performance was achieved by both when using TOF + PSF. These findings suggest a large potential benefit of TOF + PSF for oncology PET studies, especially in the detection of small, low-intensity, focal disease in larger patients.

Collaboration


Dive into the Georges El Fakhri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arkadiusz Sitek

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge