Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuan-Xi Zhang is active.

Publication


Featured researches published by Chuan-Xi Zhang.


BMC Genomics | 2010

De novo characterization of a whitefly transcriptome and analysis of its gene expression during development

Xiao-Wei Wang; Jun-Bo Luan; Jun-Min Li; Yan-Yuan Bao; Chuan-Xi Zhang; Shu-Sheng Liu

BackgroundWhitefly (Bemisia tabaci) causes extensive crop damage throughout the world by feeding directly on plants and by vectoring hundreds of species of begomoviruses. Yet little is understood about its genes involved in development, insecticide resistance, host range plasticity and virus transmission.ResultsTo facilitate research on whitefly, we present a method for de novo assembly of whitefly transcriptome using short read sequencing technology (Illumina). In a single run, we produced more than 43 million sequencing reads. These reads were assembled into 168,900 unique sequences (mean size = 266 bp) which represent more than 10-fold of all the whitefly sequences deposited in the GenBank (as of March 2010). Based on similarity search with known proteins, these analyses identified 27,290 sequences with a cut-off E-value above 10-5. Assembled sequences were annotated with gene descriptions, gene ontology and clusters of orthologous group terms. In addition, we investigated the transcriptome changes during whitefly development using a tag-based digital gene expression (DGE) system. We obtained a sequencing depth of over 2.5 million tags per sample and identified a large number of genes associated with specific developmental stages and insecticide resistance.ConclusionOur data provides the most comprehensive sequence resource available for whitefly study and demonstrates that the Illumina sequencing allows de novo transcriptome assembly and gene expression analysis in a species lacking genome information. We anticipate that next generation sequencing technologies hold great potential for the study of the transcriptome in other non-model organisms.


Insect Science | 2013

Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research

Qi-Yi Tang; Chuan-Xi Zhang

Abstract  A comprehensive but simple‐to‐use software package called DPS (Data Processing System) has been developed to execute a range of standard numerical analyses and operations used in experimental design, statistics and data mining. This program runs on standard Windows computers. Many of the functions are specific to entomological and other biological research and are not found in standard statistical software. This paper presents applications of DPS to experimental design, statistical analysis and data mining in entomology.


PLOS ONE | 2010

Transcriptome analysis of the brown planthopper Nilaparvata lugens.

Jian Xue; Yan-Yuan Bao; Bao-Ling Li; Yan-Bing Cheng; Zhiyu Peng; Hang Liu; Hai-Jun Xu; Zeng-Rong Zhu; Yong-Gen Lou; Jia-An Cheng; Chuan-Xi Zhang

Background The brown planthopper (BPH) Nilaparvata lugens (Stål) is one of the most serious insect pests of rice in Asia. However, little is known about the mechanisms responsible for the development, wing dimorphism and sex difference in this species. Genomic information for BPH is currently unavailable, and, therefore, transcriptome and expression profiling data for this species are needed as an important resource to better understand the biological mechanisms of BPH. Methodology/Principal Findings In this study, we performed de novo transcriptome assembly and gene expression analysis using short-read sequencing technology (Illumina) combined with a tag-based digital gene expression (DGE) system. The transcriptome analysis assembles the gene information for different developmental stages, sexes and wing forms of BPH. In addition, we constructed six DGE libraries: eggs, second instar nymphs, fifth instar nymphs, brachypterous female adults, macropterous female adults and macropterous male adults. Illumina sequencing revealed 85,526 unigenes, including 13,102 clusters and 72,424 singletons. Transcriptome sequences larger than 350 bp were subjected to Gene Orthology (GO) and KEGG Orthology (KO) annotations. To analyze the DGE profiling, we mainly compared the gene expression variations between eggs and second instar nymphs; second and fifth instar nymphs; fifth instar nymphs and three types of adults; brachypterous and macropterous female adults as well as macropterous female and male adults. Thousands of genes showed significantly different expression levels based on the various comparisons. And we randomly selected some genes to confirm their altered expression levels by quantitative real-time PCR (qRT-PCR). Conclusions/Significance The obtained BPH transcriptome and DGE profiling data provide comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms from various physiological aspects including development, wing dimorphism and sex difference in BPH.


Genome Biology | 2014

Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation

Jian Xue; Xin Zhou; Chuan-Xi Zhang; Lili Yu; Hai-Wei Fan; Zhuo Wang; Hai-Jun Xu; Yu Xi; Zeng-Rong Zhu; Wen-Wu Zhou; Peng-Lu Pan; Bao-Ling Li; John K. Colbourne; Hiroaki Noda; Yoshitaka Suetsugu; Tetsuya Kobayashi; Yuan Zheng; Shanlin Liu; Rui Zhang; Yang Liu; Yadan Luo; Dongming Fang; Yan Chen; Dongliang Zhan; Xiaodan Lv; Yue Cai; Zhaobao Wang; Hai-Jian Huang; Ruo-Lin Cheng; Xue-Chao Zhang

BackgroundThe brown planthopper, Nilaparvata lugens, the most destructive pest of rice, is a typical monophagous herbivore that feeds exclusively on rice sap, which migrates over long distances. Outbreaks of it have re-occurred approximately every three years in Asia. It has also been used as a model system for ecological studies and for developing effective pest management. To better understand how a monophagous sap-sucking arthropod herbivore has adapted to its exclusive host selection and to provide insights to improve pest control, we analyzed the genomes of the brown planthopper and its two endosymbionts.ResultsWe describe the 1.14 gigabase planthopper draft genome and the genomes of two microbial endosymbionts that permit the planthopper to forage exclusively on rice fields. Only 40.8% of the 27,571 identified Nilaparvata protein coding genes have detectable shared homology with the proteomes of the other 14 arthropods included in this study, reflecting large-scale gene losses including in evolutionarily conserved gene families and biochemical pathways. These unique genomic features are functionally associated with the animal’s exclusive plant host selection. Genes missing from the insect in conserved biochemical pathways that are essential for its survival on the nutritionally imbalanced sap diet are present in the genomes of its microbial endosymbionts, which have evolved to complement the mutualistic nutritional needs of the host.ConclusionsOur study reveals a series of complex adaptations of the brown planthopper involving a variety of biological processes, that result in its highly destructive impact on the exclusive host rice. All these findings highlight potential directions for effective pest control of the planthopper.


Nature | 2015

Two insulin receptors determine alternative wing morphs in planthoppers

Hai-Jun Xu; Jian Xue; Bo Lu; Xue-Chao Zhang; Ji-Chong Zhuo; Shu-Fang He; Xiao-Fang Ma; Ya-Qin Jiang; Hai-Wei Fan; Ji-Yu Xu; Y. Ye; Peng-Lu Pan; Qiao Li; Yan-Yuan Bao; H. Frederik Nijhout; Chuan-Xi Zhang

Wing polyphenism is an evolutionarily successful feature found in a wide range of insects. Long-winged morphs can fly, which allows them to escape adverse habitats and track changing resources, whereas short-winged morphs are flightless, but usually possess higher fecundity than the winged morphs. Studies on aphids, crickets and planthoppers have revealed that alternative wing morphs develop in response to various environmental cues, and that the response to these cues may be mediated by developmental hormones, although research in this area has yielded equivocal and conflicting results about exactly which hormones are involved. As it stands, the molecular mechanism underlying wing morph determination in insects has remained elusive. Here we show that two insulin receptors in the migratory brown planthopper Nilaparvata lugens, InR1 and InR2, have opposing roles in controlling long wing versus short wing development by regulating the activity of the forkhead transcription factor Foxo. InR1, acting via the phosphatidylinositol-3-OH kinase (PI(3)K)–protein kinase B (Akt) signalling cascade, leads to the long-winged morph if active and the short-winged morph if inactive. InR2, by contrast, functions as a negative regulator of the InR1–PI(3)K–Akt pathway: suppression of InR2 results in development of the long-winged morph. The brain-secreted ligand Ilp3 triggers development of long-winged morphs. Our findings provide the first evidence of a molecular basis for the regulation of wing polyphenism in insects, and they are also the first demonstration—to our knowledge—of binary control over alternative developmental outcomes, and thus deepen our understanding of the development and evolution of phenotypic plasticity.


Journal of Virology | 2011

Global Analysis of the Transcriptional Response of Whitefly to Tomato Yellow Leaf Curl China Virus Reveals the Relationship of Coevolved Adaptations

Jun-Bo Luan; Jun-Min Li; Nélia Varela; Yong-Liang Wang; Fang-Fang Li; Yan-Yuan Bao; Chuan-Xi Zhang; Shu-Sheng Liu; Xiao-Wei Wang

ABSTRACT The begomoviruses are the largest and most economically important group of plant viruses transmitted exclusively by the whitefly Bemisia tabaci in a circulative, persistent manner. The circulation of the viruses within the insect vectors involves complex interactions between virus and vector components; however, the molecular mechanisms of these interactions remain largely unknown. Here we investigated the transcriptional response of the invasive B. tabaci Middle East-Asia Minor 1 species to Tomato yellow leaf curl China virus (TYLCCNV) using Illumina sequencing technology. Results showed that 1,606 genes involved in 157 biochemical pathways were differentially expressed in the viruliferous whiteflies. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that TYLCCNV can perturb the cell cycle and primary metabolism in the whitefly, which explains the negative effect of this virus on the longevity and fecundity of B. tabaci. Our data also demonstrated that TYLCCNV can activate whitefly immune responses, such as autophagy and antimicrobial peptide production, which might lead to a gradual decrease of viral particles within the body of the viruliferous whitefly. Furthermore, PCR results showed that TYLCCNV can invade the ovary and fat body tissues of the whitefly, and Lysotracker and Western blot analyses revealed that the invasion of TYLCCNV induced autophagy in both the ovary and fat body tissues. Surprisingly, TYLCCNV also suppressed the whitefly immune responses by downregulating the expression of genes involved in Toll-like signaling and mitogen-activated protein kinase (MAPK) pathways. Taken together, these results reveal the relationship of coevolved adaptations between begomoviruses and whiteflies and will provide a road map for future investigations into the complex interactions between plant viruses and their insect vectors.


BMC Genomics | 2007

The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori

Ya Ming Shao; Ke Dong; Chuan-Xi Zhang

BackgroundNicotinic acetylcholine receptors (nAChRs) mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based on their genome sequences. The silkworm Bombyx mori is a model insect of Lepidoptera, among which are many agricultural pests. Identification and characterization of B. mori nAChR genes could provide valuable basic information for this important family of receptor genes and for the study of the molecular mechanisms of neonicotinoid action and resistance.ResultsWe searched the genome sequence database of B. mori with the fruit fly and honeybee nAChRs by tBlastn and cloned all putative silkworm nAChR cDNAs by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. B. mori appears to have the largest known insect nAChR gene family to date, including nine α-type subunits and three β-type subunits. The silkworm possesses three genes having low identity with others, including one α and two β subunits, α9, β2 and β3. Like the fruit fly and honeybee counterparts, silkworm nAChR gene α6 has RNA-editing sites, and α4, α6 and α8 undergo alternative splicing. In particular, alternative exon 7 of Bmα8 may have arisen from a recent duplication event. Truncated transcripts were found for Bmα4 and Bmα5.ConclusionB. mori possesses a largest known insect nAChR gene family characterized to date, including nine α-type subunits and three β-type subunits. RNA-editing, alternative splicing and truncated transcripts were found in several subunit genes, which might enhance the diversity of the gene family.


Genomics | 2009

Gene expression profiling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels

Yan-Yuan Bao; Xu-Dong Tang; Zu-Yao Lv; Xiu-Ye Wang; Cai-Hong Tian; Yi Peng Xu; Chuan-Xi Zhang

We investigated variations in the gene expression of Bombyx mori following infection with a nucleopolyhedrovirus (BmNPV). Two B. mori strains, KN and 306, which are highly resistant and susceptible to BmNPV infection, respectively, were used in this study. The infection profiles of BmNPV in the B. mori KN and 306 larvae revealed that the virus invaded the midguts of both these strains. However, its proliferation was notably inhibited in the midgut of the resistant strain. By using the suppression subtractive hybridization method, two cDNA libraries were constructed in order to compare the BmNPV responsive gene expressions between the two silkworm lines. In total, 62 differentially expressed genes were obtained. Real-time qPCR analysis confirmed that eight genes were significantly up-regulated in the midgut of the KN strain following BmNPV infection. Our results imply that these up-regulated genes may be involved in the B. mori immune response against BmNPV infection.


Journal of Virology | 2012

Dynamic Interactions between Bombyx mori Nucleopolyhedrovirus and Its Host Cells Revealed by Transcriptome Analysis

Jian Xue; Nan Qiao; Wei Zhang; Ruo-Lin Cheng; Xiao-Qin Zhang; Yan-Yuan Bao; Yi-Peng Xu; Lin-Zhu Gu; Jing-Dong J. Han; Chuan-Xi Zhang

ABSTRACT Although microarray and expressed sequence tag (EST)-based approaches have been used to profile gene expression during baculovirus infection, the response of host genes to baculovirus infection and the interaction between baculovirus and its host remain largely unknown. To determine the host response to Bombyx mori nucleopolyhedrovirus infection and the dynamic interaction between the virus and its host, eight digital gene expression libraries were examined in a Bm5 cell line before infection and at 1.5, 3, 6, 12, 24, 48, and 96 h postinfection. Gene set enrichment analysis of differentially expressed genes at each time point following infection showed that gene sets including cytoskeleton, transcription, translation, energy metabolism, iron ion metabolism, and the ubiquitin-proteasome pathway were altered after viral infection. In addition, a time course depicting protein-protein interaction networks between the baculovirus and the host were constructed and revealed that viral proteins interact with a multitude of cellular machineries, such as the proteasome, cytoskeleton, and spliceosome. Several viral proteins, including IE2, CG30, PE38, and PK-1/2, were predicted to play key roles in mediating virus-host interactions. Based on these results, we tested the role of the ubiquitin-proteasome pathway and iron ion metabolism in the viral infection cycle. Treatment with a proteasome inhibitor and deferoxamine mesylate in vitro and in vivo confirmed that these pathways regulate viral infection. Taken together, these findings provide new insights into the interaction between the baculovirus and its host and identify molecular mechanisms that can be used to block viral infection and improve baculovirus expression systems.


Insect Molecular Biology | 2009

Cloning, expression and functional analysis of a general odorant‐binding protein 2 gene of the rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae)

Zhong-Jun Gong; Wen-Wu Zhou; Hang Yu; Cungui Mao; Chuan-Xi Zhang; Jiaan Cheng; Zeng-Rong Zhu

A full‐length cDNA encoding a general odorant binding protein 2 (GOBP2) was cloned from the antennae of the rice striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae), by the combination of reverse transcription PCR (RT‐PCR) and rapid amplification of cDNA ends PCR (RACE‐PCR). The cDNA contains a 489 bp open reading frame, which encodes a 162 amino acid protein, termed as Ch. suppressalis GOBP2 (CsupGOBP2). CsupGOBP2 is similar in the number of amino acids and protein sequence to GOBP2s in other species of Lepidoptera. RT‐PCR results showed that CsupGOBP2 mRNA was highly expressed in the adult antennae of both females and males, as was CsupGOBP2 protein as revealed by Western blot analysis. CsupGOBP2 expressed in Escherichia coli was purified by affinity chromatography, refolding and gel filtration from the inclusion body. Fluorescence emission spectra and competitive binding assays by using N‐phenyl‐1‐naphthylamine as first binding ligand and odorants as potential competitors revealed that the CsupGOBP2 protein has significant affinity to cis‐11‐hexadecenal (Z11–16:Ald), the main component of Ch. suppressalis pheromone and to laurinaldehyd and benzaldehyde, two general plant volatile aldehydes.

Collaboration


Dive into the Chuan-Xi Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge