Ruo-Lin Cheng
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruo-Lin Cheng.
Genome Biology | 2014
Jian Xue; Xin Zhou; Chuan-Xi Zhang; Lili Yu; Hai-Wei Fan; Zhuo Wang; Hai-Jun Xu; Yu Xi; Zeng-Rong Zhu; Wen-Wu Zhou; Peng-Lu Pan; Bao-Ling Li; John K. Colbourne; Hiroaki Noda; Yoshitaka Suetsugu; Tetsuya Kobayashi; Yuan Zheng; Shanlin Liu; Rui Zhang; Yang Liu; Yadan Luo; Dongming Fang; Yan Chen; Dongliang Zhan; Xiaodan Lv; Yue Cai; Zhaobao Wang; Hai-Jian Huang; Ruo-Lin Cheng; Xue-Chao Zhang
BackgroundThe brown planthopper, Nilaparvata lugens, the most destructive pest of rice, is a typical monophagous herbivore that feeds exclusively on rice sap, which migrates over long distances. Outbreaks of it have re-occurred approximately every three years in Asia. It has also been used as a model system for ecological studies and for developing effective pest management. To better understand how a monophagous sap-sucking arthropod herbivore has adapted to its exclusive host selection and to provide insights to improve pest control, we analyzed the genomes of the brown planthopper and its two endosymbionts.ResultsWe describe the 1.14 gigabase planthopper draft genome and the genomes of two microbial endosymbionts that permit the planthopper to forage exclusively on rice fields. Only 40.8% of the 27,571 identified Nilaparvata protein coding genes have detectable shared homology with the proteomes of the other 14 arthropods included in this study, reflecting large-scale gene losses including in evolutionarily conserved gene families and biochemical pathways. These unique genomic features are functionally associated with the animal’s exclusive plant host selection. Genes missing from the insect in conserved biochemical pathways that are essential for its survival on the nutritionally imbalanced sap diet are present in the genomes of its microbial endosymbionts, which have evolved to complement the mutualistic nutritional needs of the host.ConclusionsOur study reveals a series of complex adaptations of the brown planthopper involving a variety of biological processes, that result in its highly destructive impact on the exclusive host rice. All these findings highlight potential directions for effective pest control of the planthopper.
Journal of Virology | 2012
Jian Xue; Nan Qiao; Wei Zhang; Ruo-Lin Cheng; Xiao-Qin Zhang; Yan-Yuan Bao; Yi-Peng Xu; Lin-Zhu Gu; Jing-Dong J. Han; Chuan-Xi Zhang
ABSTRACT Although microarray and expressed sequence tag (EST)-based approaches have been used to profile gene expression during baculovirus infection, the response of host genes to baculovirus infection and the interaction between baculovirus and its host remain largely unknown. To determine the host response to Bombyx mori nucleopolyhedrovirus infection and the dynamic interaction between the virus and its host, eight digital gene expression libraries were examined in a Bm5 cell line before infection and at 1.5, 3, 6, 12, 24, 48, and 96 h postinfection. Gene set enrichment analysis of differentially expressed genes at each time point following infection showed that gene sets including cytoskeleton, transcription, translation, energy metabolism, iron ion metabolism, and the ubiquitin-proteasome pathway were altered after viral infection. In addition, a time course depicting protein-protein interaction networks between the baculovirus and the host were constructed and revealed that viral proteins interact with a multitude of cellular machineries, such as the proteasome, cytoskeleton, and spliceosome. Several viral proteins, including IE2, CG30, PE38, and PK-1/2, were predicted to play key roles in mediating virus-host interactions. Based on these results, we tested the role of the ubiquitin-proteasome pathway and iron ion metabolism in the viral infection cycle. Treatment with a proteasome inhibitor and deferoxamine mesylate in vitro and in vivo confirmed that these pathways regulate viral infection. Taken together, these findings provide new insights into the interaction between the baculovirus and its host and identify molecular mechanisms that can be used to block viral infection and improve baculovirus expression systems.
Journal of Virology | 2014
Ruo-Lin Cheng; Yu Xi; Yi-Han Lou; Zhuo Wang; Ji-Yu Xu; Hai-Jun Xu; Chuan-Xi Zhang
ABSTRACT The brown planthopper (BPH), Nilaparvata lugens (Hemiptera:Delphacidae), is one of the most destructive insect pests of rice crops in Asia. Nudivirus-like sequences were identified during the whole-genome sequencing of BPH. PCR examination showed that the virus sequences were present in all of the 22 BPH populations collected from East, Southeast, and South Asia. Thirty-two of the 33 nudivirus core genes were identified, including 20 homologues of baculovirus core genes. In addition, several gene clusters that were arranged collinearly with those of other nudiviruses were found in the partial virus genome. In a phylogenetic tree constructed using the supermatrix method, the original virus was grouped with other nudiviruses and was closely related to polydnavirus. Taken together, these data indicated that the virus sequences belong to a new member of the family Nudiviridae. More specifically, the virus sequences were integrated into the chromosome of its insect host during coevolution. This study is the first report of a large double-stranded circular DNA virus genome in a sap-sucking hemipteran insect. IMPORTANCE This is the first report of a large double-stranded DNA virus integrated genome in the planthopper, a plant sap-sucking hemipteran insect. It is an exciting addition to the evolutionary story of bracoviruses (polydnaviruses), nudiviruses, and baculoviruses. The results on the virus sequences integrated in the chromosomes of its insect host also represent a story of successful coevolution of an invertebrate virus and a plant sap-sucking insect.
Journal of Virology | 2012
Bao-Qin Zhang; Ruo-Lin Cheng; Xiao-Feng Wang; Chuan-Xi Zhang
ABSTRACT Pieris rapae granulovirus (PrGV) can infect and kill larvae of Pieris rapae, a worldwide and important pest of mustard family crops. The PrGV genome consists of 108,592 bp, is AT rich (66.8%), and is most structurally and organizationally similar to the Choristoneura occidentalis granulovirus genome. Of the predicted 120 open reading frames (ORFs), 32 genes specifically occurred in GVs, including four genes unique to PrGV (Pr9, Pr32, Pr53, and Pr117).
Genomics | 2013
Yi-Peng Xu; Ruo-Lin Cheng; Yu Xi; Chuan-Xi Zhang
Bombyx mori nucleopolyhedrovirus (BmNPV) is a baculovirus that selectively infects the domestic silkworm. In this study, six BmNPV strains were compared at the whole genome level. We found that the number of bro genes and the composition of the homologous regions (hrs) are the two primary areas of divergence within these genomes. When we compared the ORFs of these BmNPV variants, we noticed a high degree of sequence divergence in the ORFs that are not baculovirus core genes. This result is consistent with the results derived from phylogenetic trees and evolutionary pressure analyses of these ORFs, indicating that ORFs that are not core genes likely play important roles in the evolution of BmNPV strains. The evolutionary relationships of these BmNPV strains might be explained by their geographic origins or those of their hosts. In addition, the total number of hr palindromes seems to affect viral DNA replication in Bm5 cells.
Journal of Virology | 2012
Ruo-Lin Cheng; Yi-Peng Xu; Chuan-Xi Zhang
ABSTRACT Bombyx mori nucleopolyhedrovirus (BmNPV) is a typical species of Baculoviridae. The complete genome sequence of a BmNPV strain with cubic occlusion bodies is reported here. The genome of this strain consists of 127,465 nucleotides with a G+C content of 40.36% and is 97.3% and 97.5% identical to those of BmNPV strain T3 and Bombyx mandarina NPV S1, respectively. Despite the abnormal polyhedra it forms, the polyhedrin gene of the BmNPV cubic strain is 100% identical to those of the other two strains. Baculovirus repeated ORFs and homologous repeat regions cause the major differences in genome size of these BmNPV isolates.
Journal of General Virology | 2012
Yi-Peng Xu; Lin-Zhu Gu; Yi-Han Lou; Ruo-Lin Cheng; Hai-Jun Xu; Wen-Bing Wang; Chuan-Xi Zhang
A baculovirus, named BomaNPV S2, was isolated from a diseased larva of the wild silkworm, Bombyx mandarina. Notably, BomaNPV S2 exhibited a distinguishing feature in that its host range covered that of both Bombyx mori nucleopolyhedrosis virus (BmNPV) and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in cultured cells. It could replicate in cells of B. mori (Bm5 and BmN), Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn-5B1-4). However, occlusion-derived virions of BomaNPV S2 in B. mori cells contained only a single nucleocapsid, whereas they contained multiple nucleocapsids in Tn-5B1-4 cells. The complete genome sequence of BomaNPV S2, including predicted ORFs, was determined and compared with the genome sequence of its close relatives. The comparison results showed that most of the BomaNPV S2 genome sequence was shared with BmNPV (BmNPV T3) or BomaNPV S1, but several regions seemed more similar to regions of AcMNPV. This observation might explain why BomaNPV S2 covers the host ranges of BmNPV and AcMNPV. Further recombinant virus infection experiments demonstrated that GP64 plays an important role in BomaNPV S2 host-range determination.
Molecular Ecology | 2017
Hai-Jian Huang; Jian Xue; Ji-Chong Zhuo; Ruo-Lin Cheng; Hai-Jun Xu; Chuan-Xi Zhang
The brown planthopper (Nilaparvata lugens, BPH), white‐backed planthopper (Sogatella furcifera, WBPH) and small brown planthopper (Laodelphax striatellus, SBPH) are important rice pests in Asia. These three species differ in thermal tolerance and exhibit quite different migration and overwintering strategies. To understand the underlying mechanisms, we sequenced and compared the transcriptome of the three species under different temperature treatments. We found that metabolism‐, exoskeleton‐ and chemosensory‐related genes were modulated. In high temperature (37 °C), heat shock protein (HSP) genes were the most co‐regulated; other genes related with fatty acid metabolism, amino acid metabolism and transportation were also differentially expressed. In low temperature (5 °C), the differences in gene expression of the genes for fatty acid synthesis, transport proteins and cytochrome P450 might explain why SBPH can overwinter in high latitudes, while BPH and WBPH cannot. In addition, other genes related with moulting, and membrane lipid composition might also play roles in resistance to low and high temperatures. Our study illustrates the common responses and different tolerance mechanisms of three rice planthoppers in coping with temperature change, and provides a potential strategy for pest management.
RSC Advances | 2014
Jun Cheng; Jia Feng; Ruo-Lin Cheng; Chuan-Xi Zhang; Junhu Zhou; Kefa Cen
The transcriptomes of original diatom strain (wild-type, Nitzschia sp.) and a mutant strain (Nitzschia ZJU2), which exhibited rapid growth and high lipid productivity after two rounds of mutagenesis by γ-rays, were sequenced using the Illumina sequencing platform. Genes in the metabolic pathway and those related to cell growth and lipid synthesis were compared between the two strains. Up to 25 804 and 35 228 transcripts were detected in Nitzschia sp. and Nitzschia ZJU2, respectively. A total of 3939 genes were up-regulated in mutant Nitzschia ZJU2. Nine metabolic pathways involved in cell growth and carbohydrate and protein syntheses obviously changed. Genes involved in lipid synthesis, such as acetyl-CoA carboxylase and diacylgycerol O-acyltransferase, were obviously up-regulated. These phenomena promoted cell growth and lipid synthesis, so as to increase the lipid production of cells. Analysis of single nucleotide polymorphisms revealed the presence of 40 795 nonsynonymous mutations in Nitzschia ZJU2, which indicated that nuclear irradiation triggers algal mutation.
Insect Science | 2016
Ruo-Lin Cheng; Yong‐Xin Yu; Ling‐Xiao Liu; Chuan-Xi Zhang; Cheng‐Xiang Fang
The Chinese caterpillar fungus, commonly known as “Dong Chong Xia Cao” (winter worm summer grass) in China, is one of the most valuable medicinal fungi in the world (Zhang et al., 2012). In the alpine meadows of the Tibetan Plateau (altitude 3500–5000 m), the ascomycete Ophiocordyceps sinensis (syn. Cordyceps sinensis) parasitizes the larvae of the ghost moth (Thitarodes spp.), forming a fungus-caterpillar complex. The caterpillar fungus has long been used in traditional Chinese medicine (TCM) for hundreds of years, with a diverse list of pharmacological effects (Zhu et al., 1998). In recent years, many scientific reports have indicated its medical benefits for the respiratory, renal, hepatic, cardiovascular and immune systems (Rathor et al., 2014). The huge commercial demand, limited distribution and the failure of artificial cultivation have caused excessive harvest of the parasitic complexes, resulting in biodiversity loss and ecosystem degradation in the Tibetan Plateau. More than 50 ghost moth species have been recorded as potential hosts of the fungus (Wang & Yao, 2011), most of which are of the genus Thitarodes (Lepidoptera: Hepialoidea). Generally, the host caterpillar lives in soil for 4–5 years and feeds on plant roots. The fungus infects larvae and finally grows