Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuanchu Wang is active.

Publication


Featured researches published by Chuanchu Wang.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2010

A Brain Controlled Wheelchair to Navigate in Familiar Environments

Brice Rebsamen; Cuntai Guan; Haihong Zhang; Chuanchu Wang; Chee Leong Teo; Marcelo H. Ang; Etienne Burdet

While brain-computer interfaces (BCIs) can provide communication to people who are locked-in, they suffer from a very low information transfer rate. Further, using a BCI requires a concentration effort and using it continuously can be tiring. The brain controlled wheelchair (BCW) described in this paper aims at providing mobility to BCI users despite these limitations, in a safe and efficient way. Using a slow but reliable P300 based BCI, the user selects a destination amongst a list of predefined locations. While the wheelchair moves on virtual guiding paths ensuring smooth, safe, and predictable trajectories, the user can stop the wheelchair by using a faster BCI. Experiments with nondisabled subjects demonstrated the efficiency of this strategy. Brain control was not affected when the wheelchair was in motion, and the BCW enabled the users to move to various locations in less time and with significantly less control effort than other control strategies proposed in the literature.


Frontiers in Neuroscience | 2012

Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b

Kai Keng Ang; Zheng Yang Chin; Chuanchu Wang; Cuntai Guan; Haihong Zhang

The Common Spatial Pattern (CSP) algorithm is an effective and popular method for classifying 2-class motor imagery electroencephalogram (EEG) data, but its effectiveness depends on the subject-specific frequency band. This paper presents the Filter Bank Common Spatial Pattern (FBCSP) algorithm to optimize the subject-specific frequency band for CSP on Datasets 2a and 2b of the Brain-Computer Interface (BCI) Competition IV. Dataset 2a comprised 4 classes of 22 channels EEG data from 9 subjects, and Dataset 2b comprised 2 classes of 3 bipolar channels EEG data from 9 subjects. Multi-class extensions to FBCSP are also presented to handle the 4-class EEG data in Dataset 2a, namely, Divide-and-Conquer (DC), Pair-Wise (PW), and One-Versus-Rest (OVR) approaches. Two feature selection algorithms are also presented to select discriminative CSP features on Dataset 2b, namely, the Mutual Information-based Best Individual Feature (MIBIF) algorithm, and the Mutual Information-based Rough Set Reduction (MIRSR) algorithm. The single-trial classification accuracies were presented using 10 × 10-fold cross-validations on the training data and session-to-session transfer on the evaluation data from both datasets. Disclosure of the test data labels after the BCI Competition IV showed that the FBCSP algorithm performed relatively the best among the other submitted algorithms and yielded a mean kappa value of 0.569 and 0.600 across all subjects in Datasets 2a and 2b respectively.


Clinical Eeg and Neuroscience | 2011

A Large Clinical Study on the Ability of Stroke Patients to Use an EEG-Based Motor Imagery Brain-Computer Interface

Kai Keng Ang; Cuntai Guan; Karen Sui Geok Chua; Beng Ti Ang; Christopher Wee Keong Kuah; Chuanchu Wang; Kok Soon Phua; Zheng Yang Chin; Haihong Zhang

Brain-computer interface (BCI) technology has the prospects of helping stroke survivors by enabling the interaction with their environment through brain signals rather than through muscles, and restoring motor function by inducing activity-dependent brain plasticity. This paper presents a clinical study on the extent of detectable brain signals from a large population of stroke patients in using EEG-based motor imagery BCI. EEG data were collected from 54 stroke patients whereby finger tapping and motor imagery of the stroke-affected hand were performed by 8 and 46 patients, respectively. EEG data from 11 patients who gave further consent to perform motor imagery were also collected for second calibration and third independent test sessions conducted on separate days. Off-line accuracies of classifying the two classes of EEG from finger tapping or motor imagery of the stroke-affected hand versus the EEG from background rest were then assessed and compared to 16 healthy subjects. The mean off-line accuracy of detecting motor imagery by the 46 patients (μ=0.74) was significantly lower than finger tapping by 8 patients (μ=0.87, p=0.008), but not significantly lower than motor imagery by healthy subjects (μ=0.78, p=0.23). Six stroke patients performed motor imagery at chance level, and no correlation was found between the accuracies of detecting motor imagery and their motor impairment in terms of Fugl-Meyer Assessment (p=0.29). The off-line accuracies of the 11 patients in the second session (μ=0.76) were not significantly different from the first session (μ=0.72, p=0.16), or from the on-line accuracies of the third independent test session (μ=0.82, p=0.14). Hence this study showed that the majority of stroke patients could use EEG-based motor imagery BCI.


IEEE Transactions on Biomedical Engineering | 2010

An EEG-Based BCI System for 2-D Cursor Control by Combining Mu/Beta Rhythm and P300 Potential

Yuanqing Li; Jinyi Long; Tianyou Yu; Zhu Liang Yu; Chuanchu Wang; Haihong Zhang; Cuntai Guan

Two-dimensional cursor control is an important and challenging issue in EEG-based brain-computer interfaces (BCIs). To address this issue, here we propose a new approach by combining two brain signals including Mu/Beta rhythm during motor imagery and P300 potential. In particular, a motor imagery detection mechanism and a P300 potential detection mechanism are devised and integrated such that the user is able to use the two signals to control, respectively, simultaneously, and independently, the horizontal and the vertical movements of the cursor in a specially designed graphic user interface. A real-time BCI system based on this approach is implemented and evaluated through an online experiment involving six subjects performing 2-D control tasks. The results attest to the efficacy of obtaining two independent control signals by the proposed approach. Furthermore, the results show that the system has merit compared with prior systems: it allows cursor movement between arbitrary positions.


international conference of the ieee engineering in medicine and biology society | 2010

Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback

Kai Keng Ang; Cuntai Guan; Karen Sui Geok Chua; Beng Ti Ang; Christopher Wee Keong Kuah; Chuanchu Wang; Kok Soon Phua; Zheng Yang Chin; Haihong Zhang

This clinical study investigates the ability of hemiparetic stroke patients in operating EEG-based motor imagery brain-computer interface (MI-BCI). It also assesses the efficacy in motor improvements on the stroke-affected upper limb using EEG-based MI-BCI with robotic feedback neurorehabilitation compared to robotic rehabilitation that delivers movement therapy. 54 hemiparetic stroke patients with mean age of 51.8 and baseline Fugl-Meyer Assessment (FMA) 14.9 (out of 66, higher = better) were recruited. Results showed that 48 subjects (89%) operated EEG-based MI-BCI better than at chance level, and their ability to operate EEG-based MI-BCI is not correlated to their baseline FMA (r=0.358). Those subjects who gave consent are randomly assigned to each group (N=11 and 14) for 12 1-hour rehabilitation sessions for 4 weeks. Significant gains in FMA scores were observed in both groups at post-rehabilitation (4.5, 6.2; p=0.032, 0.003) and 2-month post-rehabilitation (5.3, 7.3; p=0.020, 0.013), but no significant differences were observed between groups (p=0.512, 0.550). Hence, this study showed evidences that a majority of hemiparetic stroke patients can operate EEG-based MI-BCI, and that EEG-based MI-BCI with robotic feedback neurorehabilitation is effective in restoring upper extremities motor function in stroke.


IEEE Transactions on Biomedical Engineering | 2008

Asynchronous P300-Based Brain--Computer Interfaces: A Computational Approach With Statistical Models

Haihong Zhang; Cuntai Guan; Chuanchu Wang

Asynchronous control is an important issue for brain--computer interfaces (BCIs) working in real-life settings, where the machine should determine from brain signals not only the desired command but also when the user wants to input it. In this paper, we propose a novel computational approach for robust asynchronous control using electroencephalogram (EEG) and a P300-based oddball paradigm. In this approach, we first address the mathematical modeling of target P300, nontarget P300, and noncontrol signals, by using Gaussian distribution models in a support vector margin space. Furthermore, we derive a method to compute the likelihood of control state in a time window of EEG. Finally, we devise a recursive algorithm to detect control states in ongoing EEG for online application. We conducted experiments with four subjects to study both the asynchronous BCIs receiver operating characteristics and its performance in actual online tests. The results show that the BCI is able to achieve an averaged information transfer rate of approximately 20 b/min at a low false positive rate (one event per minute).


Clinical Eeg and Neuroscience | 2015

A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke

Kai Keng Ang; Karen Sui Geok Chua; Kok Soon Phua; Chuanchu Wang; Zheng Yang Chin; Christopher Wee Keong Kuah; Wilson Low; Cuntai Guan

Electroencephalography (EEG)–based motor imagery (MI) brain-computer interface (BCI) technology has the potential to restore motor function by inducing activity-dependent brain plasticity. The purpose of this study was to investigate the efficacy of an EEG-based MI BCI system coupled with MIT-Manus shoulder-elbow robotic feedback (BCI-Manus) for subjects with chronic stroke with upper-limb hemiparesis. In this single-blind, randomized trial, 26 hemiplegic subjects (Fugl-Meyer Assessment of Motor Recovery After Stroke [FMMA] score, 4-40; 16 men; mean age, 51.4 years; mean stroke duration, 297.4 days), prescreened with the ability to use the MI BCI, were randomly allocated to BCI-Manus or Manus therapy, lasting 18 hours over 4 weeks. Efficacy was measured using upper-extremity FMMA scores at weeks 0, 2, 4 and 12. ElEG data from subjects allocated to BCI-Manus were quantified using the revised brain symmetry index (rBSI) and analyzed for correlation with the improvements in FMMA score. Eleven and 15 subjects underwent BCI-Manus and Manus therapy, respectively. One subject in the Manus group dropped out. Mean total FMMA scores at weeks 0, 2, 4, and 12 weeks improved for both groups: 26.3 ± 10.3, 27.4 ± 12.0, 30.8 ± 13.8, and 31.5 ± 13.5 for BCI-Manus and 26.6 ± 18.9, 29.9 ± 20.6, 32.9 ± 21.4, and 33.9 ± 20.2 for Manus, with no intergroup differences (P = .51). More subjects attained further gains in FMMA scores at week 12 from BCI-Manus (7 of 11 [63.6%]) than Manus (5 of 14 [35.7%]). A negative correlation was found between the rBSI and FMMA score improvement (P = .044). BCI-Manus therapy was well tolerated and not associated with adverse events. In conclusion, BCI-Manus therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. Motor gains were comparable to those attained with intensive robotic therapy (1,040 repetitions/session) despite reduced arm exercise repetitions using EEG-based MI-triggered robotic feedback (136 repetitions/session). The correlation of rBSI with motor improvements suggests that the rBSI can be used as a prognostic measure for BCI-based stroke rehabilitation.


Frontiers in Neuroengineering | 2014

Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke

Kai Keng Ang; Cuntai Guan; Kok Soon Phua; Chuanchu Wang; Longjiang Zhou; Ka Yin Tang; Gopal Joseph Ephraim Joseph; Christopher Wee Keong Kuah; Karen Sui Geok Chua

The objective of this study was to investigate the efficacy of an Electroencephalography (EEG)-based Motor Imagery (MI) Brain-Computer Interface (BCI) coupled with a Haptic Knob (HK) robot for arm rehabilitation in stroke patients. In this three-arm, single-blind, randomized controlled trial; 21 chronic hemiplegic stroke patients (Fugl-Meyer Motor Assessment (FMMA) score 10–50), recruited after pre-screening for MI BCI ability, were randomly allocated to BCI-HK, HK or Standard Arm Therapy (SAT) groups. All groups received 18 sessions of intervention over 6 weeks, 3 sessions per week, 90 min per session. The BCI-HK group received 1 h of BCI coupled with HK intervention, and the HK group received 1 h of HK intervention per session. Both BCI-HK and HK groups received 120 trials of robot-assisted hand grasping and knob manipulation followed by 30 min of therapist-assisted arm mobilization. The SAT group received 1.5 h of therapist-assisted arm mobilization and forearm pronation-supination movements incorporating wrist control and grasp-release functions. In all, 14 males, 7 females, mean age 54.2 years, mean stroke duration 385.1 days, with baseline FMMA score 27.0 were recruited. The primary outcome measure was upper extremity FMMA scores measured mid-intervention at week 3, end-intervention at week 6, and follow-up at weeks 12 and 24. Seven, 8 and 7 subjects underwent BCI-HK, HK and SAT interventions respectively. FMMA score improved in all groups, but no intergroup differences were found at any time points. Significantly larger motor gains were observed in the BCI-HK group compared to the SAT group at weeks 3, 12, and 24, but motor gains in the HK group did not differ from the SAT group at any time point. In conclusion, BCI-HK is effective, safe, and may have the potential for enhancing motor recovery in chronic stroke when combined with therapist-assisted arm mobilization.


international conference of the ieee engineering in medicine and biology society | 2009

A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation

Kai Keng Ang; Cuntai Guan; Karen Sui Geok Chua; Beng Ti Ang; Christopher Wee Keong Kuah; Chuanchu Wang; Kok Soon Phua; Zheng Yang Chin; Haihong Zhang

Non-invasive EEG-based motor imagery brain-computer interface (MI-BCI) holds promise to effectively restore motor control to stroke survivors. This clinical study investigates the effects of MI-BCI for upper limb robotic rehabilitation compared to standard robotic rehabilitation. The subjects are hemiparetic stroke patients with mean age of 50.2 and baseline Fugl-Meyer (FM) score 29.7 (out of 66, higher = 3D better) randomly assigned to each group respectively (N = 3D8 and 10). Each subject underwent 12 sessions of 1-hour rehabilitation for 4 weeks. Significant gains in FM scores were observed in both groups at post-rehabilitation (4.9, p = 3D0.001) and 2-month post-rehabilitation (4.9, p = 3D0.002). The experimental group yielded higher 2-month post-rehabilitation gain than the control (6.0 versus 4.0) but no significance was found (p = 3D0.475). However, among subjects with positive gain (N = 3D6 and 7), the initial difference of 2.8 between the two groups was increased to a significant 6.5 (p = 3D0.019) after adjustment for age and gender. Hence this study provides evidence that BCI-driven robotic rehabilitation is effective in restoring motor control for stroke.


international symposium on circuits and systems | 2009

Learning EEG-based spectral-spatial patterns for attention level measurement

Brahim Hamadicharef; Haihong Zhang; Cuntai Guan; Chuanchu Wang; Kok Soon Phua; Keng Peng Tee; Kai Keng Ang

In our every day life, our brain is constantly processing information and paying attention, reacting accordingly, to all sorts of sensory inputs (auditory, visual, etc.). In some cases, there is a need to accurately measure a persons level of attention to monitor a sportsman performance, to detect Attention Deficit Hyperactivity Disorder (ADHD) in children, to evaluate the effectiveness of neuro-feedback treatment, etc.

Collaboration


Dive into the Chuanchu Wang's collaboration.

Top Co-Authors

Avatar

Cuntai Guan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge