Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kai Keng Ang is active.

Publication


Featured researches published by Kai Keng Ang.


international symposium on neural networks | 2008

Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface

Kai Keng Ang; Zheng Yang Chin; Haihong Zhang; Cuntai Guan

In motor imagery-based brain computer interfaces (BCI), discriminative patterns can be extracted from the electroencephalogram (EEG) using the common spatial pattern (CSP) algorithm. However, the performance of this spatial filter depends on the operational frequency band of the EEG. Thus, setting a broad frequency range, or manually selecting a subject-specific frequency range, are commonly used with the CSP algorithm. To address this problem, this paper proposes a novel filter bank common spatial pattern (FBCSP) to perform autonomous selection of key temporal-spatial discriminative EEG characteristics. After the EEG measurements have been bandpass-filtered into multiple frequency bands, CSP features are extracted from each of these bands. A feature selection algorithm is then used to automatically select discriminative pairs of frequency bands and corresponding CSP features. A classification algorithm is subsequently used to classify the CSP features. A study is conducted to assess the performance of a selection of feature selection and classification algorithms for use with the FBCSP. Extensive experimental results are presented on a publicly available dataset as well as data collected from healthy subjects and unilaterally paralyzed stroke patients. The results show that FBCSP, using a particular combination feature selection and classification algorithm, yields relatively higher cross-validation accuracies compared to prevailing approaches.


Frontiers in Neuroscience | 2012

Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b

Kai Keng Ang; Zheng Yang Chin; Chuanchu Wang; Cuntai Guan; Haihong Zhang

The Common Spatial Pattern (CSP) algorithm is an effective and popular method for classifying 2-class motor imagery electroencephalogram (EEG) data, but its effectiveness depends on the subject-specific frequency band. This paper presents the Filter Bank Common Spatial Pattern (FBCSP) algorithm to optimize the subject-specific frequency band for CSP on Datasets 2a and 2b of the Brain-Computer Interface (BCI) Competition IV. Dataset 2a comprised 4 classes of 22 channels EEG data from 9 subjects, and Dataset 2b comprised 2 classes of 3 bipolar channels EEG data from 9 subjects. Multi-class extensions to FBCSP are also presented to handle the 4-class EEG data in Dataset 2a, namely, Divide-and-Conquer (DC), Pair-Wise (PW), and One-Versus-Rest (OVR) approaches. Two feature selection algorithms are also presented to select discriminative CSP features on Dataset 2b, namely, the Mutual Information-based Best Individual Feature (MIBIF) algorithm, and the Mutual Information-based Rough Set Reduction (MIRSR) algorithm. The single-trial classification accuracies were presented using 10 × 10-fold cross-validations on the training data and session-to-session transfer on the evaluation data from both datasets. Disclosure of the test data labels after the BCI Competition IV showed that the FBCSP algorithm performed relatively the best among the other submitted algorithms and yielded a mean kappa value of 0.569 and 0.600 across all subjects in Datasets 2a and 2b respectively.


Clinical Eeg and Neuroscience | 2011

A Large Clinical Study on the Ability of Stroke Patients to Use an EEG-Based Motor Imagery Brain-Computer Interface

Kai Keng Ang; Cuntai Guan; Karen Sui Geok Chua; Beng Ti Ang; Christopher Wee Keong Kuah; Chuanchu Wang; Kok Soon Phua; Zheng Yang Chin; Haihong Zhang

Brain-computer interface (BCI) technology has the prospects of helping stroke survivors by enabling the interaction with their environment through brain signals rather than through muscles, and restoring motor function by inducing activity-dependent brain plasticity. This paper presents a clinical study on the extent of detectable brain signals from a large population of stroke patients in using EEG-based motor imagery BCI. EEG data were collected from 54 stroke patients whereby finger tapping and motor imagery of the stroke-affected hand were performed by 8 and 46 patients, respectively. EEG data from 11 patients who gave further consent to perform motor imagery were also collected for second calibration and third independent test sessions conducted on separate days. Off-line accuracies of classifying the two classes of EEG from finger tapping or motor imagery of the stroke-affected hand versus the EEG from background rest were then assessed and compared to 16 healthy subjects. The mean off-line accuracy of detecting motor imagery by the 46 patients (μ=0.74) was significantly lower than finger tapping by 8 patients (μ=0.87, p=0.008), but not significantly lower than motor imagery by healthy subjects (μ=0.78, p=0.23). Six stroke patients performed motor imagery at chance level, and no correlation was found between the accuracies of detecting motor imagery and their motor impairment in terms of Fugl-Meyer Assessment (p=0.29). The off-line accuracies of the 11 patients in the second session (μ=0.76) were not significantly different from the first session (μ=0.72, p=0.16), or from the on-line accuracies of the third independent test session (μ=0.82, p=0.14). Hence this study showed that the majority of stroke patients could use EEG-based motor imagery BCI.


IEEE Transactions on Biomedical Engineering | 2011

Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI

Mahnaz Arvaneh; Cuntai Guan; Kai Keng Ang; Chai Quek

Multichannel EEG is generally used in brain-computer interfaces (BCIs), whereby performing EEG channel selection 1) improves BCI performance by removing irrelevant or noisy channels and 2) enhances user convenience from the use of lesser channels. This paper proposes a novel sparse common spatial pattern (SCSP) algorithm for EEG channel selection. The proposed SCSP algorithm is formulated as an optimization problem to select the least number of channels within a constraint of classification accuracy. As such, the proposed approach can be customized to yield the best classification accuracy by removing the noisy and irrelevant channels, or retain the least number of channels without compromising the classification accuracy obtained by using all the channels. The proposed SCSP algorithm is evaluated using two motor imagery datasets, one with a moderate number of channels and another with a large number of channels. In both datasets, the proposed SCSP channel selection significantly reduced the number of channels, and outperformed existing channel selection methods based on Fisher criterion, mutual information, support vector machine, common spatial pattern, and regularized common spatial pattern in classification accuracy. The proposed SCSP algorithm also yielded an average improvement of 10% in classification accuracy compared to the use of three channels (C3, C4, and Cz).


international conference of the ieee engineering in medicine and biology society | 2010

Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback

Kai Keng Ang; Cuntai Guan; Karen Sui Geok Chua; Beng Ti Ang; Christopher Wee Keong Kuah; Chuanchu Wang; Kok Soon Phua; Zheng Yang Chin; Haihong Zhang

This clinical study investigates the ability of hemiparetic stroke patients in operating EEG-based motor imagery brain-computer interface (MI-BCI). It also assesses the efficacy in motor improvements on the stroke-affected upper limb using EEG-based MI-BCI with robotic feedback neurorehabilitation compared to robotic rehabilitation that delivers movement therapy. 54 hemiparetic stroke patients with mean age of 51.8 and baseline Fugl-Meyer Assessment (FMA) 14.9 (out of 66, higher = better) were recruited. Results showed that 48 subjects (89%) operated EEG-based MI-BCI better than at chance level, and their ability to operate EEG-based MI-BCI is not correlated to their baseline FMA (r=0.358). Those subjects who gave consent are randomly assigned to each group (N=11 and 14) for 12 1-hour rehabilitation sessions for 4 weeks. Significant gains in FMA scores were observed in both groups at post-rehabilitation (4.5, 6.2; p=0.032, 0.003) and 2-month post-rehabilitation (5.3, 7.3; p=0.020, 0.013), but no significant differences were observed between groups (p=0.512, 0.550). Hence, this study showed evidences that a majority of hemiparetic stroke patients can operate EEG-based MI-BCI, and that EEG-based MI-BCI with robotic feedback neurorehabilitation is effective in restoring upper extremities motor function in stroke.


IEEE Transactions on Biomedical Engineering | 2009

A New Discriminative Common Spatial Pattern Method for Motor Imagery Brain–Computer Interfaces

Kavitha P. Thomas; Cuntai Guan; Chiew Tong Lau; A. P. Vinod; Kai Keng Ang

Event-related desynchronization/synchronization patterns during right/left motor imagery (MI) are effective features for an electroencephalogram-based brain-computer interface (BCI). As MI tasks are subject-specific, selection of subject-specific discriminative frequency components play a vital role in distinguishing these patterns. This paper proposes a new discriminative filter bank (FB) common spatial pattern algorithm to extract subject-specific FB for MI classification. The proposed method enhances the classification accuracy in BCI competition III dataset IVa and competition IV dataset IIb. Compared to the performance offered by the existing FB-based method, the proposed algorithm offers error rate reductions of 17.42% and 8.9% for BCI competition datasets III and IV, respectively.


Pattern Recognition | 2012

Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs

Kai Keng Ang; Zheng Yang Chin; Haihong Zhang; Cuntai Guan

The common spatial pattern (CSP) algorithm is effective in decoding the spatial patterns of the corresponding neuronal activities from electroencephalogram (EEG) signal patterns in brain-computer interfaces (BCIs). However, its effectiveness depends on the subject-specific time segment relative to the visual cue and on the temporal frequency band that is often selected manually or heuristically. This paper presents a novel statistical method to automatically select the optimal subject-specific time segment and temporal frequency band based on the mutual information between the spatial-temporal patterns from the EEG signals and the corresponding neuronal activities. The proposed method comprises four progressive stages: multi-time segment and temporal frequency band-pass filtering, CSP spatial filtering, mutual information-based feature selection and naive Bayesian classification. The proposed mutual information-based selection of optimal spatial-temporal patterns and its one-versus-rest multi-class extension were evaluated on single-trial EEG from the BCI Competition IV Datasets IIb and IIa respectively. The results showed that the proposed method yielded relatively better session-to-session classification results compared against the best submission.


Neurorehabilitation and Neural Repair | 2013

Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke.

Bálint Várkuti; Cuntai Guan; Yaozhang Pan; Kok Soon Phua; Kai Keng Ang; Christopher Wee Keong Kuah; Karen Chua; Beng Ti Ang; Niels Birbaumer; Ranganathan Sitaram

Background. Robot-assisted training may improve motor function in some hemiparetic patients after stroke, but no physiological predictor of rehabilitation progress is reliable. Resting state functional magnetic resonance imaging (RS-fMRI) may serve as a method to assess and predict changes in the motor network. Objective. The authors examined the effects of upper-extremity robot-assisted rehabilitation (MANUS) versus an electroencephalography-based brain computer interface setup with motor imagery (MI EEG-BCI) and compared pretreatment and posttreatment RS-fMRI. Methods. In all, 9 adults with upper-extremity paresis were trained for 4 weeks with a MANUS shoulder-elbow robotic rehabilitation paradigm. In 3 participants, robot-assisted movement began if no voluntary movement was initiated within 2 s. In 6 participants, MI-BCI–based movement was initiated if motor imagery was detected. RS-fMRI and Fugl-Meyer (FM) upper-extremity motor score were assessed before and after training. Results. The individual gain in FM scores over 12 weeks could be predicted from functional connectivity changes (FCCs) based on the pre-post differences in RS-fMRI measurements. Both the FM gain and FCC were numerically higher in the MI-BCI group. Increases in FC of the supplementary motor area, the contralesional and ipsilesional motor cortex, and parts of the visuospatial system with mostly association cortex regions and the cerebellum correlated with individual upper-extremity function improvement. Conclusion. FCC may predict the steepness of individual motor gains. Future training could therefore focus on directly inducing these beneficial increases in FC. Evaluation of the treatment groups suggests that MI is a potential facilitator of such neuroplasticity.


Clinical Eeg and Neuroscience | 2015

A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke

Kai Keng Ang; Karen Sui Geok Chua; Kok Soon Phua; Chuanchu Wang; Zheng Yang Chin; Christopher Wee Keong Kuah; Wilson Low; Cuntai Guan

Electroencephalography (EEG)–based motor imagery (MI) brain-computer interface (BCI) technology has the potential to restore motor function by inducing activity-dependent brain plasticity. The purpose of this study was to investigate the efficacy of an EEG-based MI BCI system coupled with MIT-Manus shoulder-elbow robotic feedback (BCI-Manus) for subjects with chronic stroke with upper-limb hemiparesis. In this single-blind, randomized trial, 26 hemiplegic subjects (Fugl-Meyer Assessment of Motor Recovery After Stroke [FMMA] score, 4-40; 16 men; mean age, 51.4 years; mean stroke duration, 297.4 days), prescreened with the ability to use the MI BCI, were randomly allocated to BCI-Manus or Manus therapy, lasting 18 hours over 4 weeks. Efficacy was measured using upper-extremity FMMA scores at weeks 0, 2, 4 and 12. ElEG data from subjects allocated to BCI-Manus were quantified using the revised brain symmetry index (rBSI) and analyzed for correlation with the improvements in FMMA score. Eleven and 15 subjects underwent BCI-Manus and Manus therapy, respectively. One subject in the Manus group dropped out. Mean total FMMA scores at weeks 0, 2, 4, and 12 weeks improved for both groups: 26.3 ± 10.3, 27.4 ± 12.0, 30.8 ± 13.8, and 31.5 ± 13.5 for BCI-Manus and 26.6 ± 18.9, 29.9 ± 20.6, 32.9 ± 21.4, and 33.9 ± 20.2 for Manus, with no intergroup differences (P = .51). More subjects attained further gains in FMMA scores at week 12 from BCI-Manus (7 of 11 [63.6%]) than Manus (5 of 14 [35.7%]). A negative correlation was found between the rBSI and FMMA score improvement (P = .044). BCI-Manus therapy was well tolerated and not associated with adverse events. In conclusion, BCI-Manus therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. Motor gains were comparable to those attained with intensive robotic therapy (1,040 repetitions/session) despite reduced arm exercise repetitions using EEG-based MI-triggered robotic feedback (136 repetitions/session). The correlation of rBSI with motor improvements suggests that the rBSI can be used as a prognostic measure for BCI-based stroke rehabilitation.


Frontiers in Neuroengineering | 2014

Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke

Kai Keng Ang; Cuntai Guan; Kok Soon Phua; Chuanchu Wang; Longjiang Zhou; Ka Yin Tang; Gopal Joseph Ephraim Joseph; Christopher Wee Keong Kuah; Karen Sui Geok Chua

The objective of this study was to investigate the efficacy of an Electroencephalography (EEG)-based Motor Imagery (MI) Brain-Computer Interface (BCI) coupled with a Haptic Knob (HK) robot for arm rehabilitation in stroke patients. In this three-arm, single-blind, randomized controlled trial; 21 chronic hemiplegic stroke patients (Fugl-Meyer Motor Assessment (FMMA) score 10–50), recruited after pre-screening for MI BCI ability, were randomly allocated to BCI-HK, HK or Standard Arm Therapy (SAT) groups. All groups received 18 sessions of intervention over 6 weeks, 3 sessions per week, 90 min per session. The BCI-HK group received 1 h of BCI coupled with HK intervention, and the HK group received 1 h of HK intervention per session. Both BCI-HK and HK groups received 120 trials of robot-assisted hand grasping and knob manipulation followed by 30 min of therapist-assisted arm mobilization. The SAT group received 1.5 h of therapist-assisted arm mobilization and forearm pronation-supination movements incorporating wrist control and grasp-release functions. In all, 14 males, 7 females, mean age 54.2 years, mean stroke duration 385.1 days, with baseline FMMA score 27.0 were recruited. The primary outcome measure was upper extremity FMMA scores measured mid-intervention at week 3, end-intervention at week 6, and follow-up at weeks 12 and 24. Seven, 8 and 7 subjects underwent BCI-HK, HK and SAT interventions respectively. FMMA score improved in all groups, but no intergroup differences were found at any time points. Significantly larger motor gains were observed in the BCI-HK group compared to the SAT group at weeks 3, 12, and 24, but motor gains in the HK group did not differ from the SAT group at any time point. In conclusion, BCI-HK is effective, safe, and may have the potential for enhancing motor recovery in chronic stroke when combined with therapist-assisted arm mobilization.

Collaboration


Dive into the Kai Keng Ang's collaboration.

Top Co-Authors

Avatar

Cuntai Guan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chai Quek

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Jian-Xin Xu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge