Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuanzao Mao is active.

Publication


Featured researches published by Chuanzao Mao.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner.

Zhiye Wang; Wenyuan Ruan; Jing Shi; Li Zhang; Dan Xiang; Chao Yang; Zhongchang Wu; Yu Liu; Yanan Yu; Huixia Shou; Xiaorong Mo; Chuanzao Mao; Ping Wu

Significance Phosphate (Pi) is a primary nutrient for plant growth. Because of the low availability of soil Pi, the Pi starvation signaling in plants is gaining great interest. Arabidopsis AtPHR1 and its rice homologue OsPHR2 are known to be central transcription factors in Pi homeostasis; however, the mechanism of how plants sense external Pi fluctuation to regulate the activity of AtPHR1/OsPHR2 has been elusive. Here, we identify rice SPX1 and SPX2 as Pi-dependent inhibitors of PHR2, implicating SPX1 and SPX2 in the Pi-sensing mechanism. We also show that the SPX domain of SPX1 and SPX2 is critical for repressing PHR2 binding to cis elements by protein interaction. The discovery of cellular nutrient concentration-dependent fine-tuning sheds light on a novel mechanism of plant adaption to environmental cues. In plants, sensing the levels of external and internal nutrients is essential for reprogramming the transcriptome and adapting to the fluctuating environment. Phosphate (Pi) is a key plant nutrient, and a large proportion of Pi starvation-responsive genes are under the control of PHOSPHATE STARVATION RESPONSE REGULATOR 1 (PHR1) in Arabidopsis (AtPHR1) and its homologs, such as Oryza sativa (Os)PHR2 in rice. AtPHR1 and OsPHR2 expression is not very responsive to Pi starvation, raising the question as to how plants sense changes in cellular Pi levels to activate the central regulator. SPX [named after SYG1 (suppressor of yeast gpa1), Pho81 (CDK inhibitor in yeast PHO pathway), and XPR1 (xenotropic and polytropic retrovirus receptor)] proteins that harbor only the SPX domain are reported to be involved in the negative regulation of Pi starvation responses. Here, we show that the nuclear localized SPX proteins SPX1 and SPX2 are Pi-dependent inhibitors of the activity of OsPHR2 in rice. Indeed, SPX1 and SPX2 proteins interact with PHR2 through their SPX domain, inhibiting its binding to P1BS (the PHR1-binding sequence: GNATATNC). In vivo data, as well as results from in vitro experiments using purified SPX1, SPX2, and OsPHR2 proteins, showed that SPX1 and SPX2 inhibition of OsPHR2 activity is Pi-dependent. These data provide evidence to support the involvement of SPX1 and SPX2 in the Pi-sensing mechanism in plants.


The Plant Cell | 2014

SPX4 Negatively Regulates Phosphate Signaling and Homeostasis through Its Interaction with PHR2 in Rice

Qundan Lv; Yongjia Zhong; Yuguang Wang; Zhiye Wang; Li Zhang; Jing Shi; Zhongchang Wu; Yu Liu; Chuanzao Mao; Keke Yi; Ping Wu

This study shows that rice SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2, a key transcription factor regulating phosphate signaling. SPX4 stabilization is dependent on phosphate concentration and appears to act as a regulatory point both for nuclear localization and for binding of PHR2 to P1BS cis-elements in target DNA. PHR2, a central regulator of phosphate signaling in rice, enhanced the expression of phosphate starvation-induced (PSI) genes and resulted in the enhancement of Pi acquisition under Pi deficiency stress. This occurred via PHR2 binding to a cis-element named the PHR1 binding sequences. However, the transcription level of PHR2 was not responsive to Pi starvation. So how is activity of transcription factor PHR2 adjusted to adapt diverse Pi status? Here, we identify an SPX family protein, Os-SPX4 (SPX4 hereafter), involving in Pi starvation signaling and acting as a negative regulator of PHR2. SPX4 is shown to be a fast turnover protein. When Pi is sufficient, through its interaction with PHR2, SPX4 inhibits the binding of PHR2 to its cis-element and reduces the targeting of PHR2 to the nucleus. However, when plants grow under Pi deficiency, the degradation of SPX4 is accelerated through the 26S proteasome pathway, thereby releasing PHR2 into the nucleus and activating the expression of PSI genes. Because the level of SPX4 is responsive to Pi concentration and SPX4 interacts with PHR2 and regulates its activity, this suggests that SPX4 senses the internal Pi concentration under diverse Pi conditions and regulates appropriate responses to maintain Pi homeostasis in plants.


Planta | 2008

OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.)

Liqiang Jia; Botao Zhang; Chuanzao Mao; Jinhui Li; Yunrong Wu; Ping Wu; Zhongchang Wu

A short root mutant was isolated from an EMS-generated rice mutant library. Under normal growth conditions, the mutant exhibited short root, delayed flowering, and partial sterility. Some sections of the roots revealed that the cell length along the longitudinal axis was reduced and the cell shape in the root elongation zone shrank. Genetic analysis indicated that the short root phenotype was controlled by a recessive gene. Map-based cloning revealed that a nucleotide substitution causing an amino acid change from Gly to Arg occurred in the predicted rice gene (Os02g0550600). It coded an alkaline/neutral invertase and was homologous to Arabidopsis gene AtCyt-inv1. This gene was designated as OsCyt-inv1. The results of carbohydrate analysis showed an accumulation of sucrose and reduction of hexose in the Oscyt-inv1 mutant. Exogenously supplying glucose could rescue the root growth defects of the Oscyt-inv1 mutant. These results indicated that OsCyt-inv1 played important roles in root cell development and reproductivity in rice.


Molecular Plant | 2012

A Gain-of-Function Mutation in OsIAA11 Affects Lateral Root Development in Rice

Zhen-Xing Zhu; Yu Liu; Shaojun Liu; Chuanzao Mao; Yunrong Wu; Ping Wu

Lateral roots are important to plants for the uptake of nutrients and water. Several members of the Aux/IAA family have been shown to play crucial roles in lateral root development. Here, a member of the rice Aux/IAA family genes, OsIAA11 (LOC_Os03g43400), was isolated from a rice mutant defective in lateral root development. The gain-of-function mutation in OsIAA11 strictly blocks the initiation of lateral root primordia, but it does not affect crown root development. The expression of OsIAA11 is defined in root tips, lateral root caps, steles, and lateral root primordia. The auxin reporter DR5-GUS (β-glucuronidase) was expressed at lower levels in the mutant than in wild-type, indicating that OsIAA11 is involved in auxin signaling in root caps. The transcript abundance of both OsPIN1b and OsPIN10a was diminished in root tips of the Osiaa11 mutant. Taken together, the results indicate that the gain-of-function mutation in OsIAA11 caused the inhibition of lateral root development in rice.


Molecular Genetics and Genomics | 2004

Analysis of transcripts that are differentially expressed in three sectors of the rice root system under water deficit

Ling Yang; Bingsong Zheng; Chuanzao Mao; X. Qi; Feiyan Liu; Ping Wu

Short periods of water deprivation can stimulate the growth of seminal and lateral roots in rice, and inhibit the emergence of adventitious roots. Identification of genes in the different tissues that respond to a water deficit may help us to understand the mechanism underlying root growth under conditions when water is scarce. cDNA-amplified fragment length polymorphism (AFLP) analysis was used to profile gene expression upon imposition of water deficit in three types of root tissue from the upland rice variety Azucena: seminal root tips, lateral root zones and adventitious root primordial zones. In all, 121 unique transcript-derived fragments (TDFs) were cloned, and Northern analysis was carried out for 30 TDFs to confirm their expression patterns. Sixty-six TDFs were differentially expressed in all three root samples. Four (AC2, D6, L22 and T23) were up-regulated by water deficit in seminal root tips and lateral root zones, and down-regulated in adventitious root primordial zones, an expression pattern which reflects the phenotypic changes observed in the different root sectors. In contrast, T17 and T37 showed the opposite expression pattern in Azucena: up-regulation in adventitious roots and repression in the other two zones. Functions could be assigned to five of these six TDFs on the basis of homology: they encode an expansin (T37), a fruit-ripening protein similar to ASR (T23), submergence-induced protein 2A (T17), a dehydrin (D6) and a 9- cis -epoxycarotenoid dioxygenase1 (L22), respectively. AC2 did not show a significant match to any known gene. Northern analysis showed that these six clones exhibited expression patterns that differed between the two cultivars tested (Azucena and the lowland variety IR1552) with respect to regulation by water limitation. Furthermore, T17, T37, D6 and T23 mapped within intervals known to contain QTLs (quantitative trait loci) for root growth in rice under water deficit. These genes may regulate or co-regulate the growth and development of the three root zones in a tissue-specific manner, and may play a role in the processes that underlie the early changes in root architecture under conditions of water deprivation.


Gene | 2003

cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit.

Ling Yang; Bingsong Zheng; Chuanzao Mao; Keke Yi; Feiyan Liu; Yunrong Wu; Qinnan Tao; Ping Wu

The seminal roots of an upland rice variety, Azucena, showed accelerated elongation in response to a water deficit. The elongation of cortical cells in the elongation zone is rapidly stimulated within 16 h by the water deficit. cDNA-AFLP analysis was used to examine gene expression in seminal root tips at four time points (4, 16, 48 and 72 h) during the water deficit. One hundred and six unique genes induced by the water deficit were obtained. The expression patterns of these genes were confirmed by Northern blot analysis based on 21 selected genes representing different patterns. The 106 upregulated genes were composed of 60 genes of known function, 28 genes of unknown function and 18 novel genes. Sixty genes of known functions were involved in transport facilitation, metabolism and energy, stress- and defense-related proteins, cellular organization and cell-wall biogenesis, signal transduction, expression regulator and transposable element, suggesting that seminal root tips undergo a complex adaptive process in response to the water deficit. Expression of 22 genes reached a maximum within 16 h of water deficit treatment. These included aquaporin (PIP2a), 9-cis-epoxycarotenoid dioxygenase (NCED1) and a negative regulator of gibberellin signal transduction (SPY); eight other genes participated in cell wall loosening or vesicle traffic.


Molecular Plant | 2011

OsCAND1 Is Required for Crown Root Emergence in Rice

Xiaofei Wang; Fen-Fang He; Xiaoxia Ma; Chuanzao Mao; Charlie Hodgman; C Lu; Ping Wu

Crown roots are main components of the fibrous root system and important for crops to anchor and absorb water and nutrition. To understand the molecular mechanisms of crown root formation, we isolated a rice mutant defective in crown root emergence designated as Oscand1 (named after the Arabidopsis homologous gene AtCAND1). The defect of visible crown root in the Oscand1 mutant is the result of cessation of the G2/M cell cycle transition in the crown root meristem. Map-based cloning revealed that OsCAND1 is a homolog of Arabidopsis CAND1. During crown root primordium development, the expression of OsCAND1 is confined to the root cap after the establishment of fundamental organization. The transgenic plants harboring DR5::GUS showed that auxin signaling in crown root tip is abnormal in the mutant. Exogenous auxin application can partially rescue the defect of crown root development in Oscand1. Taken together, these data show that OsCAND1 is involved in auxin signaling to maintain the G2/M cell cycle transition in crown root meristem and, consequently, the emergence of crown root. Our findings provide new information about the molecular regulation of the emergence of crown root in rice.


Nucleic Acids Research | 2011

PmiRKB: a plant microRNA knowledge base

Yijun Meng; Lingfeng Gou; Dijun Chen; Chuanzao Mao; Yongfeng Jin; Ping Wu; Ming Chen

MicroRNAs (miRNAs), one type of small RNAs (sRNAs) in plants, play an essential role in gene regulation. Several miRNA databases were established; however, successively generated new datasets need to be collected, organized and analyzed. To this end, we have constructed a plant miRNA knowledge base (PmiRKB) that provides four major functional modules. In the ‘SNP’ module, single nucleotide polymorphism (SNP) data of seven Arabidopsis (Arabidopsis thaliana) accessions and 21 rice (Oryza sativa) subspecies were collected to inspect the SNPs within pre-miRNAs (precursor microRNAs) and miRNA—target RNA duplexes. Depending on their locations, SNPs can affect the secondary structures of pre-miRNAs, or interactions between miRNAs and their targets. A second module, ‘Pri-miR’, can be used to investigate the tissue-specific, transcriptional contexts of pre- and pri-miRNAs (primary microRNAs), based on massively parallel signature sequencing data. The third module, ‘MiR–Tar’, was designed to validate thousands of miRNA—target pairs by using parallel analysis of RNA end (PARE) data. Correspondingly, the fourth module, ‘Self-reg’, also used PARE data to investigate the metabolism of miRNA precursors, including precursor processing and miRNA- or miRNA*-mediated self-regulation effects on their host precursors. PmiRKB can be freely accessed at http://bis.zju.edu.cn/pmirkb/.


Plant Physiology | 2015

Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice

Meina Guo; Wenyuan Ruan; Fangliang Huang; Ming Zeng; Yingyao Liu; Yanan Yu; Xiaomeng Ding; Yunrong Wu; Zhongchang Wu; Chuanzao Mao; Keke Yi; Ping Wu; Xiaorong Mo

A subfamily of phosphate-responsive genes is functionally diverse in the regulation of phosphate signaling and homeostasis. Phosphorus (P), an essential macronutrient for all living cells, is indispensable for agricultural production. Although Arabidopsis (Arabidopsis thaliana) PHOSPHATE RESPONSE1 (PHR1) and its orthologs in other species have been shown to function in transcriptional regulation of phosphate (Pi) signaling and Pi homeostasis, an integrative comparison of PHR1-related proteins in rice (Oryza sativa) has not previously been reported. Here, we identified functional redundancy among three PHR1 orthologs in rice (OsPHR1, OsPHR2, and OsPHR3) using phylogenetic and mutation analysis. OsPHR3 in conjunction with OsPHR1 and OsPHR2 function in transcriptional activation of most Pi starvation-induced genes. Loss-of-function mutations in any one of these transcription factors (TFs) impaired root hair growth (primarily root hair elongation). However, these three TFs showed differences in DNA binding affinities and messenger RNA expression patterns in different tissues and growth stages, and transcriptomic analysis revealed differential effects on Pi starvation-induced gene expression of single mutants of the three TFs, indicating some degree of functional diversification. Overexpression of genes encoding any of these TFs resulted in partial constitutive activation of Pi starvation response and led to Pi accumulation in the shoot. Furthermore, unlike OsPHR2-overexpressing lines, which exhibited growth retardation under normal or Pi-deficient conditions, OsPHR3-overexpressing plants exhibited significant tolerance to low-Pi stress but normal growth rates under normal Pi conditions, suggesting that OsPHR3 would be useful for molecular breeding to improve Pi uptake/use efficiency under Pi-deficient conditions. We propose that OsPHR1, OsPHR2, and OsPHR3 form a network and play diverse roles in regulating Pi signaling and homeostasis in rice.


The Plant Cell | 2011

The Predicted Arabidopsis Interactome Resource and Network Topology-Based Systems Biology Analyses

Mingzhi Lin; Xi Zhou; Xueling Shen; Chuanzao Mao; Xin Chen

Protein–protein interactions are important mechanisms for genes and gene networks to function. This study demonstrates that, although the PAIR database has limited coverage, representing ~24% of the entire interactome with ~40% precision, it is rich enough to capture many significant functional linkages within and between higher-order biological systems, such as pathways and biological processes. Predicted interactions are a valuable complement to experimentally reported interactions in molecular mechanism studies, particularly for higher organisms, for which reported experimental interactions represent only a small fraction of their total interactomes. With careful engineering consideration of the lessons from previous efforts, the Predicted Arabidopsis Interactome Resource (PAIR; ) presents 149,900 potential molecular interactions, which are expected to cover ~24% of the entire interactome with ~40% precision. This study demonstrates that, although PAIR still has limited coverage, it is rich enough to capture many significant functional linkages within and between higher-order biological systems, such as pathways and biological processes. These inferred interactions can nicely power several network topology-based systems biology analyses, such as gene set linkage analysis, protein function prediction, and identification of regulatory genes demonstrating insignificant expression changes. The drastically expanded molecular network in PAIR has considerably improved the capability of these analyses to integrate existing knowledge and suggest novel insights into the function and coordination of genes and gene networks.

Collaboration


Dive into the Chuanzao Mao's collaboration.

Top Co-Authors

Avatar

Ping Wu

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Liu

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge