Chun-Hsu Su
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chun-Hsu Su.
Reports on Progress in Physics | 2011
Igor Aharonovich; Stefania Castelletto; David A. Simpson; Chun-Hsu Su; Andrew D. Greentree; Steven Prawer
The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information—thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.
International Journal of Applied Earth Observation and Geoinformation | 2016
Alexander Gruber; Chun-Hsu Su; Simon Zwieback; Wade T. Crow; Wouter Dorigo; W. Wagner
Abstract To date, triple collocation (TC) analysis is one of the most important methods for the global-scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method. Different notations that are used to formulate the TC problem are shown to be mathematically identical. While many studies have investigated issues related to possible violations of the underlying assumptions, only few TC modifications have been proposed to mitigate the impact of these violations. Moreover, assumptions, which are often understood as a limitation that is unique to TC analysis are shown to be common also to other conventional performance metrics. Noteworthy advances in TC analysis have been made in the way error estimates are being presented by moving from the investigation of absolute error variance estimates to the investigation of signal-to-noise ratio (SNR) metrics. Here we review existing error presentations and propose the combined investigation of the SNR (expressed in logarithmic units), the unscaled error variances, and the soil moisture sensitivities of the data sets as an optimal strategy for the evaluation of remotely-sensed soil moisture data sets.
Journal of Geophysical Research | 2014
Chun-Hsu Su; Dongryeol Ryu; Wade T. Crow; Andrew W. Western
Triple collocation (TC) is routinely used to resolve approximated linear relationships between different measurements (or representations) of a geophysical variable that are subject to errors. It has been utilized in the context of calibration, validation, bias correction, and error characterization to allow comparisons of diverse data records from various direct and indirect measurement techniques including in situ remote sensing and model-based approaches. However, successful applications of TC require sufficiently large numbers of coincident data points from three independent time series and, within the analysis period, homogeneity of their linear relationships and error structures. These conditions are difficult to realize in practice due to infrequent spatiotemporal sampling of satellite and ground-based sensors. TC can, however, be generalized within the framework of instrumental variable (IV) regression theory to address some of the conceptual constraints of TC. We review the theoretics of IV and consider one possible strategy to circumvent the three-data constraint by use of lagged variables (LV) as instruments. This particular implementation of IV is suitable for circumstances where multiple data records are limited and the geophysical variable of interest is sampled at time intervals shorter than its temporal correlation length. As a demonstration of utility, the LV method is applied to microwave satellite soil moisture data sets to recover their errors over Australia and to estimate temporal properties of their relationships with in situ and model data. These results are compared against standard two-data linear estimators and the TC estimator as benchmark.
Optics Express | 2008
Chun-Hsu Su; Andrew D. Greentree; Lloyd C. L. Hollenberg
We analyze a nitrogen-vacancy (NV-) colour centre based single photon source based on cavity Purcell enhancement of the zero phonon line and suppression of other transitions. Optimal performance conditions of the cavity-centre system are analyzed using Master equation and quantum trajectory methods. By coupling the centre strongly to a high-finesse optical cavity [Q approximately O(10(4) - 10(5)), V approximately lambda (3)] and using sub-picosecond optical excitation the system has striking performance, including effective lifetime of 70 ps, linewidth of 0.01 nm, near unit single photon emission probability and small [O(10(-5))] multi-photon probability.
Optics Express | 2009
Mark P. Hiscocks; Chun-Hsu Su; Brant C. Gibson; Andrew D. Greentree; Lloyd C. L. Hollenberg; François Ladouceur
To take existing quantum optical experiments and devices into a more practical regimes requires the construction of robust, solid-state implementations. In particular, to observe the strong-coupling regime of tom-photon interactions requires very small cavities and large quality factors. Here we show that the slot-waveguide geometry recently introduced for photonic applications is also promising for quantum optical applications in the visible regime. We study diamond- and GaP-based slot-waveguide cavities (SWCs) compatible with diamond colour centres e.g. nitrogen-vacancy (NV) defect. We show that one can achieve increased single-photon Rabi frequencies of order O(10(11)) rad s(-1) in ultra-small cavity modal volumes, nearly 2 orders of magnitude smaller than previously studied diamond-based photonic crystal cavities.
Physical Review A | 2008
Chun-Hsu Su; Andrew D. Greentree; William J. Munro; Kae Nemoto; Lloyd C. L. Hollenberg
Cavity quantum electrodynamic schemes for quantum gates are amongst the earliest quantum computing proposals. Despite continued progress and the recent demonstration of photon blockade, there are still issues with optimal coupling and gate operation involving high-quality cavities. Here we show that dynamic cavity control allows for scalable cavity-QED based quantum gates using the full cavity bandwidth. This technique allows an order of magnitude increase in operating speed, and two orders reduction in cavity Q, over passive systems. Our method exploits Stark shift-based Q switching, and is ideally suited to solid-state integrated optical approaches to quantum computing
IEEE Transactions on Geoscience and Remote Sensing | 2014
W. Wagner; Luca Brocca; Vahid Naeimi; Rolf H. Reichle; C. Draper; Richard de Jeu; Dongryeol Ryu; Chun-Hsu Su; Andrew W. Western; Jean-Christophe Calvet; Yann Kerr; Delphine J. Leroux; Matthias Drusch; Thomas J. Jackson; Sebastian Hahn; Wouter Dorigo; Christoph Paulik
In a recent paper, Leroux compared three satellite soil moisture data sets (SMOS, AMSR-E, and ASCAT) and ECMWF forecast soil moisture data to in situ measurements over four watersheds located in the United States. Their conclusions stated that SMOS soil moisture retrievals represent “an improvement [in RMSE] by a factor of 2-3 compared with the other products” and that the ASCAT soil moisture data are “very noisy and unstable.” In this clarification, the analysis of Leroux is repeated using a newer version of the ASCAT data and additional metrics are provided. It is shown that the ASCAT retrievals are skillful, although they show some unexpected behavior during summer for two of the watersheds. It is also noted that the improvement of SMOS by a factor of 2-3 mentioned by Leroux is driven by differences in bias and only applies relative to AMSR-E and the ECWMF data in the now obsolete version investigated by Leroux et al.
Journal of Geophysical Research | 2016
A. Gruber; Chun-Hsu Su; Wade T. Crow; Simon Zwieback; Wouter Dorigo; W. Wagner
Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite-based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified data set. However, this requires an appropriate parameterization of the error structures of the underlying data sets. While triple collocation (TC) analysis has been widely recognized as a powerful tool for estimating random error variances of coarse-resolution soil moisture data sets, the estimation of error cross covariances remains an unresolved challenge. Here we propose a method—referred to as extended collocation (EC) analysis—for estimating error cross-correlations by generalizing the TC method to an arbitrary number of data sets and relaxing the therein made assumption of zero error cross-correlation for certain data set combinations. A synthetic experiment shows that EC analysis is able to reliably recover true error cross-correlation levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer-EOS (AMSR-E) C-band and X-band observations together with advanced scatterometer (ASCAT) retrievals, modeled data from Global Land Data Assimilation System (GLDAS)-Noah and in situ measurements drawn from the International Soil Moisture Network, EC yields reasonable and strong nonzero error cross-correlations between the two AMSR-E products. Against expectation, nonzero error cross-correlations are also found between ASCAT and AMSR-E. We conclude that the proposed EC method represents an important step toward a fully parameterized error covariance matrix for coarse-resolution soil moisture data sets, which is vital for any rigorous data assimilation framework or data merging scheme.
Physical Review A | 2009
Chun-Hsu Su; Andrew D. Greentree; Lloyd C. L. Hollenberg
Quantum communication places stringent requirements on single-photon sources. Here we report a theoretical study of the cavity Purcell enhancement of two diamond point defects, the nickel-nitrogen (NE8) and silicon-vacancy (SiV) centers, for high-performance, near on-demand single-photon generation. By coupling the centers strongly to high-finesse optical photonic-band-gap cavities with modest quality factor Q=O (104) and small mode volume V=O (?3), these system can deliver picosecond single-photon pulses at their zero-phonon lines with probabilities of 0.954 (NE8) and 0.812 (SiV) under a realistic optical excitation scheme. The undesirable blinking effect due to transitions via metastable states can also be suppressed with O (10-4) blinking probability. We analyze the application of these enhanced centers, including the previously studied cavity-enhanced nitrogen-vacancy (NV) center, to long-distance Bennett-Brassard 1984 protocol quantum key distribution (QKD) in fiber-based, open-air terrestrial and satellite-ground setups. In this comparative study, we show that they can deliver performance comparable with decoy state implementation with weak coherent sources, and are most suitable for open-air communication
Water Resources Research | 2016
Camila Alvarez‐Garreton; Dongryeol Ryu; Andrew W. Western; Wade T. Crow; Chun-Hsu Su; David R. Robertson
This paper explores the use of active and passive microwave satellite soil moisture products for improving streamflow prediction within four large (>5000km2) semiarid catchments in Australia. We use the probability distributed model (PDM) under a data-scarce scenario and aim at correcting two key controlling factors in the streamflow generation: the rainfall forcing data and the catchment wetness condition. The soil moisture analysis rainfall tool (SMART) is used to correct a near real-time satellite rainfall product (forcing correction scheme) and an ensemble Kalman filter is used to correct the PDM soil moisture state (state correction scheme). These two schemes are combined in a dual correction scheme and we assess the relative improvements of each. Our results demonstrate that the quality of the satellite rainfall product is improved by SMART during moderate-to-high daily rainfall events, which in turn leads to improved streamflow prediction during high flows. When employed individually, the soil moisture state correction scheme generally outperforms the rainfall correction scheme, especially for low flows. Overall, the combined dual correction scheme further improves the streamflow predictions (reduction in root mean square error and false alarm ratio, and increase in correlation coefficient and Nash-Sutcliffe efficiency). Our results provide new evidence of the value of satellite soil moisture observations within data-scarce regions. We also identify a number of challenges and limitations within the schemes.