Chun-Qing Song
University of Massachusetts Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chun-Qing Song.
Nature Biotechnology | 2016
Hao Yin; Chun-Qing Song; Joseph R. Dorkin; Lihua Julie Zhu; Yingxiang Li; Qiongqiong Wu; Angela I. Park; Junghoon Yang; Sneha Suresh; Aizhan Bizhanova; Ankit Gupta; Mehmet Fatih Bolukbasi; Stephen Walsh; Roman L. Bogorad; Guangping Gao; Zhiping Weng; Yizhou Dong; Victor Koteliansky; Scot A. Wolfe; Robert Langer; Wen Xue; Daniel G. Anderson
The combination of Cas9, guide RNA and repair template DNA can induce precise gene editing and the correction of genetic diseases in adult mammals. However, clinical implementation of this technology requires safe and effective delivery of all of these components into the nuclei of the target tissue. Here, we combine lipid nanoparticle–mediated delivery of Cas9 mRNA with adeno-associated viruses encoding a sgRNA and a repair template to induce repair of a disease gene in adult animals. We applied our delivery strategy to a mouse model of human hereditary tyrosinemia and show that the treatment generated fumarylacetoacetate hydrolase (Fah)-positive hepatocytes by correcting the causative Fah-splicing mutation. Treatment rescued disease symptoms such as weight loss and liver damage. The efficiency of correction was >6% of hepatocytes after a single application, suggesting potential utility of Cas9-based therapeutic genome editing for a range of diseases.
Nature Biotechnology | 2017
Hao Yin; Chun-Qing Song; Sneha Suresh; Qiongqiong Wu; Stephen Walsh; Luke Hyunsik Rhym; Esther Mintzer; Mehmet Fatih Bolukbasi; Lihua Julie Zhu; Kevin J. Kauffman; Haiwei Mou; Alicia Oberholzer; Junmei Ding; Suet-Yan Kwan; Roman L. Bogorad; Timofei S. Zatsepin; Victor Koteliansky; Scot A. Wolfe; Wen Xue; Robert Langer; Daniel G. Anderson
Efficient genome editing with Cas9–sgRNA in vivo has required the use of viral delivery systems, which have limitations for clinical applications. Translational efforts to develop other RNA therapeutics have shown that judicious chemical modification of RNAs can improve therapeutic efficacy by reducing susceptibility to nuclease degradation. Guided by the structure of the Cas9–sgRNA complex, we identify regions of sgRNA that can be modified while maintaining or enhancing genome-editing activity, and we develop an optimal set of chemical modifications for in vivo applications. Using lipid nanoparticle formulations of these enhanced sgRNAs (e-sgRNA) and mRNA encoding Cas9, we show that a single intravenous injection into mice induces >80% editing of Pcsk9 in the liver. Serum Pcsk9 is reduced to undetectable levels, and cholesterol levels are significantly lowered about 35% to 40% in animals. This strategy may enable non-viral, Cas9-based genome editing in the liver in clinical settings.
Genome Biology | 2017
Haiwei Mou; Jordan L. Smith; Lingtao Peng; Hao Yin; Jill Moore; Xiao-Ou Zhang; Chun-Qing Song; Ankur Sheel; Qiongqiong Wu; Deniz M. Ozata; Yingxiang Li; Daniel G. Anderson; Charles P. Emerson; Erik J. Sontheimer; Melissa J. Moore; Zhiping Weng; Wen Xue
CRISPR is widely used to disrupt gene function by inducing small insertions and deletions. Here, we show that some single-guide RNAs (sgRNAs) can induce exon skipping or large genomic deletions that delete exons. For example, CRISPR-mediated editing of β-catenin exon 3, which encodes an autoinhibitory domain, induces partial skipping of the in-frame exon and nuclear accumulation of β-catenin. A single sgRNA can induce small insertions or deletions that partially alter splicing or unexpected larger deletions that remove exons. Exon skipping adds to the unexpected outcomes that must be accounted for, and perhaps taken advantage of, in CRISPR experiments.
Gastroenterology | 2017
Chun-Qing Song; Yingxiang Li; Haiwei Mou; Jill Moore; Angela Park; Yotsawat Pomyen; Soren Hough; Zachary Kennedy; Andrew H. Fischer; Hao Yin; Daniel G. Anderson; Darryl Conte; Lars Zender; Xin Wei Wang; Snorri S. Thorgeirsson; Zhiping Weng; Wen Xue
BACKGROUND & AIMS It has been a challenge to identify liver tumor suppressors or oncogenes due to the genetic heterogeneity of these tumors. We performed a genome-wide screen to identify suppressors of liver tumor formation in mice, using CRISPR-mediated genome editing. METHODS We performed a genome-wide CRISPR/Cas9-based knockout screen of P53-null mouse embryonic liver progenitor cells that overexpressed MYC. We infected p53-/-;Myc;Cas9 hepatocytes with the mGeCKOa lentiviral library of 67,000 single-guide RNAs (sgRNAs), targeting 20,611 mouse genes, and transplanted the transduced cells subcutaneously into nude mice. Within 1 month, all the mice that received the sgRNA library developed subcutaneous tumors. We performed high-throughput sequencing of tumor DNA and identified sgRNAs increased at least 8-fold compared to the initial cell pool. To validate the top 10 candidate tumor suppressors from this screen, we collected data from patients with hepatocellular carcinoma (HCC) using the Cancer Genome Atlas and COSMIC databases. We used CRISPR to inactivate candidate tumor suppressor genes in p53-/-;Myc;Cas9 cells and transplanted them subcutaneously into nude mice; tumor formation was monitored and tumors were analyzed by histology and immunohistochemistry. Mice with liver-specific disruption of p53 were given hydrodynamic tail-vein injections of plasmids encoding Myc and sgRNA/Cas9 designed to disrupt candidate tumor suppressors; growth of tumors and metastases was monitored. We compared gene expression profiles of liver cells with vs without tumor suppressor gene disrupted by sgRNA/Cas9. Genes found to be up-regulated after tumor suppressor loss were examined in liver cancer cell lines; their expression was knocked down using small hairpin RNAs, and tumor growth was examined in nude mice. Effects of the MEK inhibitors AZD6244, U0126, and trametinib, or the multi-kinase inhibitor sorafenib, were examined in human and mouse HCC cell lines. RESULTS We identified 4 candidate liver tumor suppressor genes not previously associated with liver cancer (Nf1, Plxnb1, Flrt2, and B9d1). CRISPR-mediated knockout of Nf1, a negative regulator of RAS, accelerated liver tumor formation in mice. Loss of Nf1 or activation of RAS up-regulated the liver progenitor cell markers HMGA2 and SOX9. RAS pathway inhibitors suppressed the activation of the Hmga2 and Sox9 genes that resulted from loss of Nf1 or oncogenic activation of RAS. Knockdown of HMGA2 delayed formation of xenograft tumors from cells that expressed oncogenic RAS. In human HCCs, low levels of NF1 messenger RNA or high levels of HMGA2 messenger RNA were associated with shorter patient survival time. Liver cancer cells with inactivation of Plxnb1, Flrt2, and B9d1 formed more tumors in mice and had increased levels of mitogen-activated protein kinase phosphorylation. CONCLUSIONS Using a CRISPR-based strategy, we identified Nf1, Plxnb1, Flrt2, and B9d1 as suppressors of liver tumor formation. We validated the observation that RAS signaling, via mitogen-activated protein kinase, contributes to formation of liver tumors in mice. We associated decreased levels of NF1 and increased levels of its downstream protein HMGA2 with survival times of patients with HCC. Strategies to inhibit or reduce HMGA2 might be developed to treat patients with liver cancer.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Haiwei Mou; Jill Moore; Sunil K. Malonia; Yingxiang Li; Deniz M. Ozata; Soren Hough; Chun-Qing Song; Jordan L. Smith; Andrew H. Fischer; Zhiping Weng; Michael R. Green; Wen Xue
Significance Oncogenic KRAS underlies 30–90% of lung, colon, and pancreatic cancers, but despite more than 30 y of research, clinical inhibitors of KRAS—and potential resistance mechanisms—remain elusive. Using CRISPR-mediated genome editing of oncogenic Kras, we show that some lung cancer cells can survive Kras knockout, indicating the existence of mechanisms that allow tumors to escape Kras oncogene addiction. We identify genes highly expressed in Kras knockout cells, including the Fas receptor gene. Antibodies that activate Fas receptor selectively induced apoptosis in Kras-independent lung cancer cells, suggesting a potential strategy for combinatorial therapies against Kras-driven tumors. These findings have direct translational implications for the treatment of lung cancer and other KRAS mutant cancer types. Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras. Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles’ heel in tumors initiated by oncogenic Kras.
Human Gene Therapy | 2018
Chun-Qing Song; Dan Wang; Tingting Jiang; Kevin O'Connor; Qiushi Tang; Lingling Cai; Xiangrui Li; Zhiping Weng; Hao Yin; Guangping Gao; Christian Mueller; Terence R. Flotte; Wen Xue
CRISPR (clustered regularly interspaced short palindromic repeats) genome editing holds promise in the treatment of genetic diseases that currently lack effective long-term therapies. Patients with alpha-1 antitrypsin (AAT) deficiency develop progressive lung disease due to the loss of AATs antiprotease function and liver disease due to a toxic gain of function of the common mutant allele. However, it remains unknown whether CRISPR-mediated AAT correction in the liver, where AAT is primarily expressed, can correct either or both defects. Here we show that AAV delivery of CRISPR can effectively correct Z-AAT mutation in the liver of a transgenic mouse model. Specifically, we co-injected two AAVs: one expressing Cas9 and another encoding an AAT guide RNA and homology-directed repair template. In both neonatal and adult mice, this treatment partially restored M-AAT in the serum. Furthermore, deep sequencing confirmed both indel mutations and precise gene correction in the liver, permitting careful analysis of gene editing events in vivo. This study demonstrates a proof of concept for the application of CRISPR-Cas9 technology to correct AAT mutations in vivo and validates continued exploration of this approach for the treatment of patients with AAT deficiency.
Nature Reviews Gastroenterology & Hepatology | 2018
Chun-Qing Song; Wen Xue
CRISPR–Cas9 has revolutionized biomedical research. Studies in the past few years have achieved notable successes in hepatology, such as correction of genetic disease genes and generation of liver cancer animal models. Where does this technology stand at the frontier of basic and translational liver research?
Nature Biotechnology | 2018
Dan Wang; Jia Li; Chun-Qing Song; Karen Tran; Haiwei Mou; Pei-Hsuan Wu; Phillip W.L. Tai; Craig A Mendonca; Lingzhi Ren; Blake Y. Wang; Qin Su; Dominic J. Gessler; Phillip D. Zamore; Wen Xue; Guangping Gao
We report a genome-editing strategy to correct compound heterozygous mutations, a common genotype in patients with recessive genetic disorders. Adeno-associated viral vector delivery of Cas9 and guide RNA induces allelic exchange and rescues the disease phenotype in mouse models of hereditary tyrosinemia type I and mucopolysaccharidosis type I. This approach recombines non-mutated genetic information present in two heterozygous alleles into one functional allele without using donor DNA templates.We report a genome-editing strategy to correct compound heterozygous mutations, a common genotype in patients with recessive genetic disorders. Adeno-associated viral vector delivery of Cas9 and guide RNA induces allelic exchange and rescues the disease phenotype in mouse models of hereditary tyrosinemia type I and mucopolysaccharidosis type I. This approach recombines non-mutated genetic information present in two heterozygous alleles into one functional allele without using donor DNA templates.
Genome Biology | 2018
Raed Ibraheim; Chun-Qing Song; Aamir Mir; Nadia Amrani; Wen Xue; Erik J. Sontheimer
BackgroundClustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) have recently opened a new avenue for gene therapy. Cas9 nuclease guided by a single-guide RNA (sgRNA) has been extensively used for genome editing. Currently, three Cas9 orthologs have been adapted for in vivo genome engineering applications: Streptococcus pyogenes Cas9 (SpyCas9), Staphylococcus aureus Cas9 (SauCas9), and Campylobacter jejuni (CjeCas9). However, additional in vivo editing platforms are needed, in part to enable a greater range of sequences to be accessed via viral vectors, especially those in which Cas9 and sgRNA are combined into a single vector genome.ResultsHere, we present in vivo editing using Neisseria meningitidis Cas9 (NmeCas9). NmeCas9 is compact, edits with high accuracy, and possesses a distinct protospacer adjacent motif (PAM), making it an excellent candidate for safe gene therapy applications. We find that NmeCas9 can be used to target the Pcsk9 and Hpd genes in mice. Using tail-vein hydrodynamic-based delivery of NmeCas9 plasmid to target the Hpd gene, we successfully reprogram the tyrosine degradation pathway in Hereditary Tyrosinemia Type I mice. More importantly, we deliver NmeCas9 with its sgRNA in a single recombinant adeno-associated vector (rAAV) to target Pcsk9, resulting in lower cholesterol levels in mice. This all-in-one vector yielded > 35% gene modification after two weeks of vector administration, with minimal off-target cleavage in vivo.ConclusionsOur findings indicate that NmeCas9 can enable the editing of disease-causing loci in vivo, expanding the targeting scope of RNA-guided nucleases.
Nature Chemical Biology | 2018
Hao Yin; Chun-Qing Song; Sneha Suresh; Suet-Yan Kwan; Qiongqiong Wu; Stephen Walsh; Junmei Ding; Roman L. Bogorad; Lihua Julie Zhu; Scot A. Wolfe; Victor Koteliansky; Wen Xue; Robert Langer; Daniel G. Anderson