Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lihua Julie Zhu is active.

Publication


Featured researches published by Lihua Julie Zhu.


Nature Biotechnology | 2008

Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases

Xiangdong Meng; Marcus Blaine Noyes; Lihua Julie Zhu; Nathan D. Lawson; Scot A. Wolfe

Direct genomic manipulation at a specific locus is still not feasible in most vertebrate model organisms. In vertebrate cell lines, genomic lesions at a specific site have been introduced using zinc-finger nucleases (ZFNs). Here we adapt this technology to create targeted mutations in the zebrafish germ line. ZFNs were engineered that recognize sequences in the zebrafish ortholog of the vascular endothelial growth factor-2 receptor, kdr (also known as kdra). Co-injection of mRNAs encoding these ZFNs into one-cell-stage zebrafish embryos led to mutagenic lesions at the target site that were transmitted through the germ line with high frequency. The use of engineered ZFNs to introduce heritable mutations into a genome obviates the need for embryonic stem cell lines and should be applicable to most animal species for which early-stage embryos are easily accessible.


Cell Metabolism | 2012

Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome.

Christine M. Oslowski; Takashi Hara; Bryan O'Sullivan-Murphy; Kohsuke Kanekura; Simin Lu; Mariko Hara; Shinsuke Ishigaki; Lihua Julie Zhu; Emiko Hayashi; Simon T. Hui; Dale L. Greiner; Randal J. Kaufman; Rita Bortell; Fumihiko Urano

Recent clinical and experimental evidence suggests that endoplasmic reticulum (ER) stress contributes to the life-and-death decisions of β cells during the progression of type 1 and type 2 diabetes. Although crosstalk between inflammation and ER stress has been suggested to play a significant role in β cell dysfunction and death, a key molecule connecting ER stress to inflammation has not been identified. Here we report that thioredoxin-interacting protein (TXNIP) is a critical signaling node that links ER stress and inflammation. TXNIP is induced by ER stress through the PERK and IRE1 pathways, induces IL-1β mRNA transcription, activates IL-1β production by the NLRP3 inflammasome, and mediates ER stress-mediated β cell death. Collectively, our results suggest that TXNIP is a potential therapeutic target for diabetes and ER stress-related human diseases such as Wolfram syndrome.


BMC Bioinformatics | 2010

ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data

Lihua Julie Zhu; Claude Gazin; Nathan D. Lawson; Hervé Pagès; Simon Lin; David S. Lapointe; Michael R. Green

BackgroundChromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) or ChIP followed by genome tiling array analysis (ChIP-chip) have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC) Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome.ResultsWe have developed ChIPpeakAnno as a Bioconductor package within the statistical programming environment R to facilitate batch annotation of enriched peaks identified from ChIP-seq, ChIP-chip, cap analysis of gene expression (CAGE) or any experiments resulting in a large number of enriched genomic regions. The binding sites annotated with ChIPpeakAnno can be viewed easily as a table, a pie chart or plotted in histogram form, i.e., the distribution of distances to the nearest genes for each set of peaks. In addition, we have implemented functionalities for determining the significance of overlap between replicates or binding sites among transcription factors within a complex, and for drawing Venn diagrams to visualize the extent of the overlap between replicates. Furthermore, the package includes functionalities to retrieve sequences flanking putative binding sites for PCR amplification, cloning, or motif discovery, and to identify Gene Ontology (GO) terms associated with adjacent genes.ConclusionsChIPpeakAnno enables batch annotation of the binding sites identified from ChIP-seq, ChIP-chip, CAGE or any technology that results in a large number of enriched genomic regions within the statistical programming environment R. Allowing users to pass their own annotation data such as a different Chromatin immunoprecipitation (ChIP) preparation and a dataset from literature, or existing annotation packages, such as GenomicFeatures and BSgenom e, provides flexibility. Tight integration to the biomaRt package enables up-to-date annotation retrieval from the BioMart database.


Nature Biotechnology | 2016

Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo.

Hao Yin; Chun-Qing Song; Joseph R. Dorkin; Lihua Julie Zhu; Yingxiang Li; Qiongqiong Wu; Angela I. Park; Junghoon Yang; Sneha Suresh; Aizhan Bizhanova; Ankit Gupta; Mehmet Fatih Bolukbasi; Stephen Walsh; Roman L. Bogorad; Guangping Gao; Zhiping Weng; Yizhou Dong; Victor Koteliansky; Scot A. Wolfe; Robert Langer; Wen Xue; Daniel G. Anderson

The combination of Cas9, guide RNA and repair template DNA can induce precise gene editing and the correction of genetic diseases in adult mammals. However, clinical implementation of this technology requires safe and effective delivery of all of these components into the nuclei of the target tissue. Here, we combine lipid nanoparticle–mediated delivery of Cas9 mRNA with adeno-associated viruses encoding a sgRNA and a repair template to induce repair of a disease gene in adult animals. We applied our delivery strategy to a mouse model of human hereditary tyrosinemia and show that the treatment generated fumarylacetoacetate hydrolase (Fah)-positive hepatocytes by correcting the causative Fah-splicing mutation. Treatment rescued disease symptoms such as weight loss and liver damage. The efficiency of correction was >6% of hepatocytes after a single application, suggesting potential utility of Cas9-based therapeutic genome editing for a range of diseases.


BMC Genomics | 2009

Annotating the human genome with Disease Ontology.

John D. Osborne; Jared Flatow; Michelle Holko; Simon Lin; Warren A. Kibbe; Lihua Julie Zhu; Maria I. Danila; Gang Feng; Rex L. Chisholm

BackgroundThe human genome has been extensively annotated with Gene Ontology for biological functions, but minimally computationally annotated for diseases.ResultsWe used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx) to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease Ontology), to filter and interpret results from MMTx. The results were validated against the Homayouni gene collection using recall and precision measurements. We compared our results with the widely used Online Mendelian Inheritance in Man (OMIM) annotations.ConclusionThe validation data set suggests a 91% recall rate and 97% precision rate of disease annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our thesaurus-based approach allows for comparisons to be made between disease containing databases and allows for increased accuracy in disease identification through synonym matching. The much higher recall rate of our approach demonstrates that annotating human genome with Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease annotation of human genome.


Nucleic Acids Research | 2011

FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system

Lihua Julie Zhu; Majid Kazemian; Christopher J. Hull; Metewo Selase Enuameh; Matthew D. Basciotta; Jessie A. Brasefield; Cong Zhu; Yuna Asriyan; David S. Lapointe; Saurabh Sinha; Scot A. Wolfe; Michael H. Brodsky

FlyFactorSurvey (http://pgfe.umassmed.edu/TFDBS/) is a database of DNA binding specificities for Drosophila transcription factors (TFs) primarily determined using the bacterial one-hybrid system. The database provides community access to over 400 recognition motifs and position weight matrices for over 200 TFs, including many unpublished motifs. Search tools and flat file downloads are provided to retrieve binding site information (as sequences, matrices and sequence logos) for individual TFs, groups of TFs or for all TFs with characterized binding specificities. Linked analysis tools allow users to identify motifs within our database that share similarity to a query matrix or to view the distribution of occurrences of an individual motif throughout the Drosophila genome. Together, this database and its associated tools provide computational and experimental biologists with resources to predict interactions between Drosophila TFs and target cis-regulatory sequences.


Nucleic Acids Research | 2011

Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases

Ankit Gupta; Xiangdong Meng; Lihua Julie Zhu; Nathan D. Lawson; Scot A. Wolfe

Zinc finger nucleases (ZFNs) facilitate tailor-made genomic modifications in vivo through the creation of targeted double-stranded breaks. They have been employed to modify the genomes of plants and animals, and cell-based therapies utilizing ZFNs are undergoing clinical trials. However, many ZFNs display dose-dependent toxicity presumably due to the generation of undesired double-stranded breaks at off-target sites. To evaluate the parameters influencing the functional specificity of ZFNs, we compared the in vivo activity of ZFN variants targeting the zebrafish kdrl locus, which display both high on-target activity and dose-dependent toxicity. We evaluated their functional specificity by assessing lesion frequency at 141 potential off-target sites using Illumina sequencing. Only a minority of these off-target sites accumulated lesions, where the thermodynamics of zinc finger–DNA recognition appear to be a defining feature of active sites. Surprisingly, we observed that both the specificity of the incorporated zinc fingers and the choice of the engineered nuclease domain could independently influence the fidelity of these ZFNs. The results of this study have implications for the assessment of likely off-target sites within a genome and point to both zinc finger-dependent and -independent characteristics that can be tailored to create ZFNs with greater precision.


Nature Medicine | 2010

A genome-wide RNA interference screen reveals an essential CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications

Zhi Sheng; Li Li; Lihua Julie Zhu; Thomas W. Smith; Andrea Demers; Alonzo H. Ross; Richard P. Moser; Michael R. Green

Activating transcription factor-5 (ATF5) is highly expressed in malignant glioma and has a key role in promoting cell survival. Here we perform a genome-wide RNAi screen to identify transcriptional regulators of ATF5. Our results reveal an essential survival pathway in malignant glioma, whereby activation of a RAS–mitogen-activated protein kinase or phosphoinositide-3-kinase signaling cascade leads to induction of the transcription factor cAMP response element–binding protein-3–like-2 (CREB3L2), which directly activates ATF5 expression. ATF5, in turn, promotes survival by stimulating transcription of myeloid cell leukemia sequence-1 (MCL1), an antiapoptotic B cell leukemia-2 family member. Analysis of human malignant glioma samples indicates that ATF5 expression inversely correlates with disease prognosis. The RAF kinase inhibitor sorafenib suppresses ATF5 expression in glioma stem cells and inhibits malignant glioma growth in cell culture and mouse models. Our results demonstrate that ATF5 is essential in malignant glioma genesis and reveal that the ATF5-mediated survival pathway described here provides potential therapeutic targets for treatment of malignant glioma.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants

Ankita Bansal; Lihua Julie Zhu; Kelvin Yen; Heidi A. Tissenbaum

Significance Genetic and environmental manipulations have been identified that result in lifespan extension. The underlying assumption that lifespan extension would also result in an increase in healthspan is seemingly valid but infrequently examined. Here, we examined multiple pathways that modulate lifespan to investigate the relationship between lifespan extension and health. We analyzed wild-type and four long-lived mutants in an unbiased cross-sectional study with multiple assays until animals reached 80% maximum lifespan. We show lifespan and healthspan can be separated and all of the long-lived mutants extend the period of frailty as a consequence. If applied to humans, this would likely lead to unsustainable healthcare costs and demonstrates the importance of examining healthspan as opposed to lifespan for future research. Aging research has been very successful at identifying signaling pathways and evolutionarily conserved genes that extend lifespan with the assumption that an increase in lifespan will also increase healthspan. However, it is largely unknown whether we are extending the healthy time of life or simply prolonging a period of frailty with increased incidence of age-associated diseases. Here we use Caenorhabditis elegans, one of the premiere systems for lifespan studies, to determine whether lifespan and healthspan are intrinsically correlated. We conducted multiple cellular and organismal assays on wild type as well as four long-lived mutants (insulin/insulin-like growth factor-1, dietary restriction, protein translation, mitochondrial signaling) in a longitudinal manner to determine the health of the animals as they age. We find that some long-lived mutants performed better than wild type when measured chronologically (number of days). However, all long-lived mutants increased the proportion of time spent in a frail state. Together, these data suggest that lifespan can no longer be the sole parameter of interest and reveal the importance of evaluating multiple healthspan parameters for future studies on antiaging interventions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis

Jessica Lopes da Rosa; Victor L. Boyartchuk; Lihua Julie Zhu; Paul D. Kaufman

Candida albicans is a ubiquitous opportunistic pathogen that is the most prevalent cause of hospital-acquired fungal infections. In mammalian hosts, C. albicans is engulfed by phagocytes that attack the pathogen with DNA-damaging reactive oxygen species (ROS). Acetylation of histone H3 lysine 56 (H3K56) by the fungal-specific histone acetyltransferase Rtt109 is important for yeast model organisms to survive DNA damage and maintain genome integrity. To assess the importance of Rtt109 for C. albicans pathogenicity, we deleted the predicted homolog of Rtt109 in the clinical C. albicans isolate, SC5314. C. albicans rtt109−/− mutant cells lack acetylated H3K56 (H3K56ac) and are hypersensitive to genotoxic agents. Additionally, rtt109−/− mutant cells constitutively display increased H2A S129 phosphorylation and elevated DNA repair gene expression, consistent with endogenous DNA damage. Importantly, C. albicans rtt109−/− cells are significantly less pathogenic in mice and more susceptible to killing by macrophages in vitro than are wild-type cells. Via pharmacological inhibition of the host NADPH oxidase enzyme, we show that the increased sensitivity of rtt109−/− cells to macrophages depends on the host’s ability to generate ROS, providing a mechanistic link between the drug sensitivity, gene expression, and pathogenesis phenotypes. We conclude that Rtt109 is particularly important for fungal pathogenicity, suggesting a unique target for therapeutic antifungal compounds.

Collaboration


Dive into the Lihua Julie Zhu's collaboration.

Top Co-Authors

Avatar

Jianhong Ou

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Michael R. Green

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Scot A. Wolfe

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Nathan D. Lawson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Jun Yu

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Brian C. Lewis

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Chung Lee

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Michael H. Brodsky

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Zhang

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge